
Volume:3 Issue:11, 1998

J a v a D e v e l o p e r s J o u r n a l . c o m

TM

ORACLE8i: THE FIRST INTERNET DBORACLE8i: THE FIRST INTERNET DBORACLE8i: THE FIRST INTERNET DB

SYS-CON
PUBLICATIONS

Product Reviews
JBuilder

by Ed Zebrowski pg.28
...

Parts for Java
by Ed Zebrowski pg.40

...
Cyberflex Open 16K
by Jim Milbery pg.52

Straight Talking
Would Java Die?

by AlanWilliamson pg.24

From the Industry
Most Important Features

by Michel Gerin pg.27

Cosmic Cup
Java Virtual Machines

by Ajit Sagar pg.43

The Grind
Application

Servers: Part 2
by Java George pg.66

IMHO
Riding the Wave

by Don Preuninger pg.60

FREE CD
JBuilder 2
Referentia

RETAILERS PLEASE DISPLAY
UNTIL JANUARY 31, 1998

JBuilder by Inprise:
Features Both
Ease of Use
and Power

★JDJ★EXCLUSIVE★★ ★

★JDJ★EXCLUSIVE★★ ★

Oracle8i & Java: Thomas Kurian

An Enterprise Java Platform & Dave Rosenberg

Build and deploy enterprise applications using open Internet standards 8

Trade-offs of the Java Language Ajit Sagar
Java is doing a pretty good job of defining its turf 18

Case Study: A 100% Pure Java Solution John Melka
A bank’s journey from legacy systems to Java 32

Referentia for JBuilder Larry Lieberman
An integrated multimedia training for JBuilder 36

CORBACorner: CORBA 3.0 Update JP Morgenthal
Advanced features of this update could make CORBA the way to go 56

The Java Management Interface Luke Gorrie & Michael Sick
A powerful set of features in a modular and extensible architecture 46

Bringing JINI Down to Earth... Jason Rutherglen
How does JINI federate virtual machines on a network? 58

Widget Factory: JSplash Claude Duguay
Add a splash screen to your widget collection 14

5VOLUME: 3 ISSUE: 11 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Build a better mousetrap and the world will
build a better mouse. In the beginning we had
a two-tiered architecture (I count mainframes
as prehistory), and we could figure out how to
do things with it. Unfortunately, one of the
things we figured out was that we needed more
than two tiers. Up came the concept of an
application server and a Web server to accom-
pany our ubiquitous database server.

I’ve had occasion recently to look at a num-
ber of currently available application servers.
In general I like what I see, but as usual there
isn’t one single product that fulfills every need,
although there should be. That’s my opinion of
course – but that’s what this column is about.

The purpose of an application server is to
provide a convenient integration point for
business logic, reduce or remove business
logic from client applications, minimize net-
work traffic and provide an open interface to
the business logic. No server is perfect, but
here’s my list of minimum features that make
up my ideal starting point.

The first place I look is language support.
I’m a big supporter of Java, but let’s be honest:
it’s not the only language in use and it never
will be. That’s not just on the server side
either. I know of many shops where Java in a
browser is prohibited, and just as many who
feel the same about ActiveX controls. The
point is that an application server should sup-
port several languages and paradigms, from
both a component standpoint inside the serv-
er and a client standpoint. To me the minimum
should include Enterprise JavaBeans, regular
Java classes, C/C++ code and ActiveX. I’ve
found many application servers out there that
will support Java, but only a relative handful
that will support ActiveX. It’s a big world, and
many companies have ActiveX components or
products that can become part of an applica-
tion. I believe in building best-of-breed solu-
tions, not just best-of-language.

Similarly, the methods provided for access-
ing the server should be as broad as possible.
To my mind CORBA IDL, RMI and COM support
need to be present. One vendor I know of goes
so far as to support method calls as if they
were stored procedures and the application
server was in fact a database. In general, sup-
porting CORBA and COM clients allows greater
flexibility in client languages and deployment
environments, while RMI expands the field fur-
ther for us Java fanatics.

Transaction services should also be part
of the package. Ideally, the server-side devel-
oper should be able to concentrate on writing
code without worrying about database trans-
actions. This is one area that shows the most
variation. Almost all servers have some trans-
action support, but some provide their own.

Some allow you to hook into existing prod-
ucts or specifications such as Tuxedo, DTC or
XA, and some support the JTS standard. I’m
on the fence about which is more appropri-
ate. Pretty much any one of these approaches
works, so the idea is to insist on some trans-
action service rather than coding your own.
Some servers that support multiple compo-
nent types don’t allow transactions between
types (for example, while some servers may
use JTS but allow COM components, without
some fancy footwork the COM component
may not be able to take part in a transaction).
If heterogeneous server code is a fact of life
for you, make sure your server treats all com-
ponents equally.

Right up there with transaction manage-
ment is connection caching. A connection
cache allows a small pool of database connec-
tions to service a larger number of user con-
nections. For example, a five-user Oracle
license might serve 25 clients simultaneously.
The idea is that no database connection is
used 100% of the time, so the connection cache
can multiplex the connection for greater
throughput.

Security services and network manage-
ment are also features to look for. The typical
approach is to apply a role to a component.
This may not be granular enough if you need to
apply security or data member to a particular
function rather than at the component level.
This is one area where no vendor really pro-
vides sufficient functionality. The ability to
manage the server remotely, and for the server
to participate in network management prod-
ucts such as HP Openview or some other
SNMP-compatible product, is also a key point.

Finally, the server should support debug-
ging. If you can’t debug running code, your
development time goes through the roof. Any
vendor who says you can run the code first
locally to see how it’ll react is snowing you – you
need to be able to debug inside the server.

So there’s my minimum perfect beast. As
soon as someone builds it, I’ll let you know (and
then I’ll come up with a new set of features). If
you’d like to help me with this, come visit me at
the Java Internet Expo on December 8 in New
York City. I’ll be there with other members of the
JDJ staff to meet with you, answer questions,
hobnob with the big shots and (dare I say it) sign
autographs. See you there.

About the Author
Sean Rhody is the editor-in-chief of Java
Developer’s Journal. He is also a senior
consultant with Computer Sciences Corporation
where he specializes in application architecture,
particularly distributed systems.He can be reached
by e-mail at sean@sys-con.com.

The Perfect Beast

FROM THE EDITOR

Sean Rhody, Editor-in-Chief
EDITORIAL ADVISORY BOARD

Ted Coombs, Bill Dunlap, David Gee, Arthur van Hoff,
Brian Maso, Miko Matsumura, Kim Polese,

Sean Rhody, Rick Ross, Richard Soley, George Paolini
Editor-in-Chief: Sean Rhody

Art Director: Jim Morgan
Executive Editor: Scott Davison
Managing Editor: Anita Hartzfeld

Senior Editor: M’lou Pinkham
Production Editor: Brian Christensen
Technical Editor: Bahadir Karuv
Visual J++ Editor: Ed Zebrowski

Visual Café Pro Editor: Alan Williamson
Product Review Editor: Jim Mathis

Games & Graphics Editor: Eric Ries
Tips & Techniques Editor: Brian Maso

WRITERS IN THIS ISSUE
Claude Duguay, Michel Gerin, Luke Gorrie, Thomas

Kurian, Larry Lieberman, George Kassabgi, Samir Mehta,
John Melka, Jim Milbery, JP Morgenthal, Don Preuninger,

Sean Rhody, Dave Rosenberg, Jason Rutherglen,
Ajit Sagar, Michael Sick, Alan Williamson, Ed Zebrowski

SUBSCRIPTIONS
For subscriptions and requests for bulk orders,

please send your letters to Subscription Department

Subscription Hotline: 800 513-7111
Cover Price: $4.99/issue

Domestic: $49/yr. (12 issues) Canada/Mexico: $69/yr.
Overseas: Basic subscription price plus airmail postage

(U.S. Banks or Money Orders). Back Issues: $12 each

Publisher, President and CEO: Fuat A. Kircaali
Vice President, Production: Jim Morgan
Vice President, Marketing: Carmen Gonzalez

Advertising Manager: Claudia Jung
Advertising Assistants: Robyn Forma

Jaclyn Redmond
Accounting: Ignacio Arellano

Graphic Designers: Robin Groves
Alex Botero

Webmaster: Robert Diamond
Senior Web Designer: Corey Low

Customer Service: Sian O’Gorman
Paula Horowitz

Online Customer Service: Mitchell Low
Customer Service Interns: Angela Frasco

Ann Marie Milillo

EDITORIAL OFFICES
SYS-CON Publications, Inc.

39 E. Central Ave., Pearl River, NY 10965
Telephone: 914 735-1900 Fax: 914 735-3922

Subscribe@SYS-CON.com
JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is

published monthly (12 times a year) for $49.00 by SYS-CON
Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.

Application to mail at Periodicals Postage rates is pending at
Pearl River, NY 10965 and additional mailing offices.

POSTMASTER: Send address changes to:
JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

39 E. Central Ave., Pearl River, NY 10965-2306.

© COPYRIGHT
Copyright © 1998 by SYS-CON Publications, Inc. All rights reserved. No part of this
publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy or any information storage and retrieval system,

without written permission. For promotional reprints, contact reprint coordinator.
SYS-CON Publications, Inc. reserves the right to revise, republish and authorize

its readers to use the articles submitted for publication.

Worldwide Distribution by
Curtis Circulation Company

739 River Road, New Milford NJ 07646-3048 Phone: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and other countries.

SYS-CON Publications, Inc. is independent of Sun Microsystems, Inc.
All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

SYS-CON
PUBLICATIONS

7VOLUME: 3 ISSUE: 11 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

After my family and I moved to Seattle, my friend Barry visited us with his wife, Mary,
and their beautiful daughter, Julia. We hadn’t visited Mt. Rainier so we thought it would be
a good idea for all of us to drive there together. We weren’t even half an hour into the trip
when Julia asked, “Are we there yet?” That wasn’t the only time she asked. The trip turned
out to be excellent, but I didn’t know then that I would soon be asking myself the same
question for a different reason.

Barry is a technical writer turned developer at a reputable software company. During his
visit, our discussion turned to the industry’s adaptation of Java as a language and platform.
He asked me if “Java was there yet” – if Java had industry support and wasn’t just hype any-
more. I was a little hesitant in answering that question, especially since Java had just cele-
brated its third birthday. So I decided to apply my trusted “dependency requirement algo-
rithm” recursively to the problem at hand.

How does one determine if the industry has adopted a new standard? Look for adopters!
My Internet search generated hits in excess of 4,092,640 for Java companies ranging from soft-
ware giants like Microsoft, IBM, Sun, Oracle, Symantec and Computer Associates to minnows
like 4thpass, WoodenChair and ObjectSoft. Well, I thought, these are the software companies
and they’re likely to adopt Java earlier. Upon further digging, when I found that corporations
like Siemens, Xerox, Volvo and Citibank were using our product, SourceGuard, it was hard not
to notice an emerging trend in the corporate development environments. Also, the fact that
more than one third of the SourceGuard downloads were from outside the U.S. indicated that
the adoption of Java was not just domestic but global.

In order to adopt Java, what do these corporations need? First and foremost, they need
personnel with domain knowledge. My Internet search revealed Java-related job hits in
excess of 6,008,332! Not a small number, even if you consider those that repeated, cross-ref-
erenced or were out of date. I came across sites solely advertising Java jobs (www.java-
jobs.com, www.javajobsite.com) to online recruiting services like www.dice.com. Almost all
the printed and online magazines I came across advertised Java openings. Who caters to
the needs of these personnel? From JavaSoft (www.javasoft.com) to IBM’s JCentral
(www.ibm.com/java), many thousands of dedicated and nondedicated sites provide users
with up-to-date information on Java-related topics. Then there are Usenet newsgroups for
discussing Java topics (comp.lang.java.*) and private newsgroup postings and forums like
the one hosted by Java Developer’s Journal (JDJ) online magazine (www.JavaDevelop-
ersJournal.com). These resources are the tip of the iceberg. You just can’t overlook print-
ed and online dedicated magazines like JDJ and other nondedicated magazines. On top of
these, Java books fill up shelves in major bookstores. In an online bookstore, Amazon.com
(www.amazon.com), a simple search revealed some 400+ books on Java.

After completing my search for resources for personnel, I decided to check tools necessary
for a productive environment. I found tools required for various stages of product development,
ranging from requirement analysis, design, development, debugging, protection and installation
to marketing. Searching for the right tool was a matter of visiting JDJ’s online buyer’s guide,
JavaSoft’s Java Reel and Java Solutions Guide, not to mention scores of online e-commerce
stores.

If available resources are any indication of the adoption of Java, the answer is clear. This is
without even touching the embedded market segment! Just as with everything else in life, there
are issues that need to be addressed – Sun versus Microsoft, JFC versus WFC, Java standards
body versus JavaSoft and many more.

Well, at least I’m clear about my answer to Barry: “Yes, it looks like we’re almost
there.”

About the Author
Samir Mehta is chief technical officer and cofounder of 4thpass LLC, a market leader in Java bytecode
protection. He can be reached at samir@4thpass.com.

GUEST EDITORIAL

Samir Mehta

CALL FOR SUBSCRIPTIONS

1 800 513-7111
International Subscriptions

& Customer Service Inquiries
914 735-1900

or by fax: 914 735-3922

E-Mail: Subscribe@SYS-CON.com
http://www.SYS-CON.com

MAIL All Subscription Orders or
Customer Service Inquiries to:

EDITORIAL OFFICES
Phone: 914 735-7300

Fax: 914 735-3922

ADVERTISING & SALES OFFICE
Phone: 914 735-0300

Fax: 914 735-7302

CUSTOMER SERVICE
Phone: 914 735-1900

Fax: 914 735-3922

DESIGN & PRODUCTION
Phone: 914 735-7300

Fax: 914 735-6547

WORLDWIDE DISTRIBUTION by
Curtis Circulation Company

739 River Road, New Milford, NJ 07646-3048
Phone: 201 634-7400

DISTRIBUTED in the USA by
International Periodical Distributors

674 Via De La Valle, Suite 204
Solana Beach, CA 92075

Phone: 619 481-5928

SYS-CON
PUBLICATIONS

DEVELOPER’S

JOURNAL

SYS-CON Publications
CONTACT ESSENTIALS

SYS-CON Publications
CONTACT ESSENTIALS

PowerBuilder Developer’s Journal
http://www.PowerBuilderJournal.com

Cold Fusion Developer’s Journal
http://www.ColdFusionJournal.com

VRML Developer’s Journal
http://www.VRMLDevelopersJournal.com

Secrets of the PowerBuilder Masters
http://www.PowerBuilderBooks.com

Java Developer’s Journal
http://www.JavaDeveloperJournal.com

Are We There Yet?

The Internet is rapidly evolving from a static, stateless, information-exchange
medium to a dynamic transactional medium that offers new opportunities to change
how we do business. To exploit these opportunities, leading-edge independent soft-
ware vendors and corporate IT organizations are beginning to build and deploy
enterprise applications using open Internet standards. They use standard Internet
browsers and HTML as clients, model their business logic in Java and access these
applications via open Internet communication protocols such as HTTP and IIOP.
They deploy applications on a small number of professionally managed, highly scal-
able and high-performance application servers and database servers.

8 • VOLUME: 3 ISSUE: 11 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Build and
deploy enterprise

applications
using open

Internet
standards

Oracle8i&Java:Oracle8i&Java:
An Enterprise
Java Platform

JDJ FEATURE

by Thomas Kurian and Dave Rosenberg

9VOLUME: 3 ISSUE: 11 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Building enterprise applications on the Internet model has been
challenging, however, requiring application developers to learn an
enormous number of tools, and different types of servers and mid-
dleware. Further, the infrastructure platforms available have failed
to offer the performance, scalability or reliability required by enter-
prise applications. Java servers in particular have faced three
important limitations. First, the Java language is challenging, requir-
ing automatic storage management, language-level multithreading
and loosely coupled dynamic loading that limit scalability and per-
formance. Second, the first generation of Java VMs have naturally
focused on the needs of single-user systems; for example, good,
lightweight performance for dynamically downloaded applets, and
GUI-driven execution rather than the enormous throughput, perfor-
mance (for long-running, preinstalled applications) and reliability
required for mission-critical, transaction-oriented business applica-
tions. Third, Java VMs have required developers to write multi-
threaded servers using sophisticated multiprogramming concepts
rather than providing a robust, multithreaded server platform that
simply runs business applications scalably.

Oracle8i was designed to dramatically simplify how Internet
applications are developed, deployed and managed. There are
three fundamental components to this strategy.

• At the heart of Oracle8i is a fast and highly scalable Java Virtual
Machine that is seamlessly integrated with the database kernel
and provides an efficient execution platform for Java programs.
It was designed specifically to address the three challenges
described above – performance, scalability and reliability.

• Oracle8i provides users with a variety of industry-standard pro-
grammatic interfaces with which to build applications in Java.
These include support for Enterprise JavaBeans, CORBA Ser-
vices in Java and Java stored procedures, an emerging standard
supported by virtually all the major database vendors. Java
applications in turn access SQL via standard interfaces – JDBC
drivers or SQLJ, a standard way to embed SQL statements in Java
programs.

• Oracle offers JDeveloper, a Java development tool that provides
a number of facilities supporting SQLJ, Java stored procedures,
Enterprise JavaBeans and CORBA services

Key Architectural Features of Oracle’s Java VM
Figure 1 provides an architectural illustration of Oracle8i’s JVM.

Three primary architectural components make it an efficient serv-
er platform.
• An advanced server-oriented memory manager to improve the

scalability of Java programs
• A high-performance native compiler to speed up the execution of

Java programs
• A generalized protocol framework to allow Java programs to be

accessed directly from a variety of Internet clients

Server-Oriented Memory Management System
The Oracle database has for many years supported a highly

scalable server called the MultiThreaded Server (see Figure 2)
within which we have integrated Oracle’s JVM. The JVM includes a
unique, high-performance memory manager that conforms to and
is tuned to the multithreaded server’s shared memory model while
remaining completely transparent to the Java programmer. It allo-
cates and frees memory in chunks called object memories. There
are three different types of object memories with different lifetimes
and degrees of sharing across users:
• Shared memory: The JVM puts immutable Java objects (such as

metadata, bytecode vectors and constant pool data) into shared
memory initialized once and shared across users.

• Session Memory: It places Java session state (the transitive clo-
sure of each concurrent user’s static variables over their refer-
ences) into per-client shared memory, giving users the illusion of
their own “virtual machine.”

• Call Memory: Finally, it uses per-call memory as the allocation
space of a modern-generation, scavenging garbage collector.

The net benefit of these sophisticated shared-memory mecha-
nisms is to reduce per-user memory requirements for typical state-
ful Java sessions to between 80 and 150 KB, allowing Oracle8i to
support tens of thousands of concurrent users.

Native Compilation
Contrary to early impressions, Java is not inherently slow to

execute, but is amenable to a wide range of compilation strategies.
Oracle8i’s JVM includes a native compiler tuned to the needs of
server applications. It translates Java binaries to a portable subset
of ANSI C source, which is in turn dynamically compiled to plat-
form-specific binary code by a target C compiler. The resulting exe-

cutable is dynamically linked directly into
the server as a dynamic-link library. We
adopted this approach for two reasons:
first, server code tends to be longer lived
and more throughput-critical than client
code, allowing us to invest more resources
upfront to produce more efficient code than
JIT compilers, which must amortize the
cost of compilation over a much shorter
duty cycle; and second, it allows us to offer
high performance uniformly on over 60 dif-
ferent hardware and operating system plat-
forms.

The net benefit of native compilation? In
early tests the native compiler has demon-
strated improved Java execution perfor-
mance from 15 to 40 times faster than inter-
preted code.

Generalized Protocol Framework
To allow a variety of standard Internet

clients such as browsers, Internet mail
clients, embedded ORBs and middle-tier
application servers to access Java pro-
grams scalably in the server, we have gen-
eralized the database’s listener and dis-
patcher to provide general-purpose proto-
col handling for arbitrary, user-defined pro-
tocols. Oracle8i uses this infrastructure to
provide native support for HTTP, IIOP, Inter-
net Mail protocols (IMAP4, SMTP, POP3)
and other protocols including FTP.

Programming Oracle8i’s JVM
Oracle8i’s VM is a general-purpose JVM;

any Java application can be run on it. It sup-
ports three different programming models:

Java stored procedures, Enterprise Java-
Beans and CORBA Services.

Java Stored Procedures
Java programs can be stored and execut-

ed in the Oracle database as Java stored pro-
cedures, which allow users to program the
database by adding business rules in Java to
extend SQL. As an industry standard, Java
stored procedures are portable across data-
bases from many different vendors. Such
procedures use JDBC or SQLJ to access data.
Because they execute in the database serv-
er, SQL access is much faster than when the
data needs to be retrieved from the server to
a JVM on another machine. Java stored pro-
grams run in a variety of contexts:
• User-defined functions and stored proce-

dures are called within SQL queries,
allowing the stored procedure program-
mer to directly extend SQL with Java.

• Triggers are stored procedures that are
tied to a particular table or view and exe-
cute when that table or view is changed.
All five types of Oracle triggers can be
implemented in Java.

• Object-relational methods allow users to
add behavior to SQL object types in Java.
Java stored programs can be invoked
from any database client including Java
clients such as JDBC and SQLJ, 4GL tools
such as Developer/2000 and Power-
Builder, and C/C++ clients via ODBC or
the Oracle call interface.

Enterprise JavaBeans (EJBs)
EJBs give Java application programmers

a convenient and highly productive compo-
nent model for server-side business logic,
facilitating code reuse and multitier appli-
cation development. Oracle8i provides a
highly scalable and high-performance exe-
cution environment for EJBs that complies
with the EJB 1.0 specification. It supplies a
number of EJB services including a Java
Transaction Service (JTS) API via the
embedded JDBC driver, which has been
extended to support JTS-visible transac-
tions. It exposes a Java Naming and Direc-
tory Interface (JNDI) to any industry stan-
dard Lightweight Directory Access Protocol
(LDAP)-enabled directory service. EJB com-
ponents in the server can be placed in any
standard directory and accessed via JNDI.
Additionally, it provides a stringent securi-
ty framework using Internet-standard secu-
rity mechanisms such as SSL over IIOP for
encryption, coupled with traditional data-
base authentication and multiple layers of
access control.

CORBA Servers
Distributed systems developers can

use the infrastructure used for EJBs to
deploy CORBA servers implemented in

http://www.JavaDevelopersJournal.com

Figure 1: Oracle’s JVM architecture

Java applications (EJBs, stored procedures, CORBA

Built-in libraries (ORB, EJB, JDBC, SQLJ translator, Tools)

Standard class libraries

Interpreter

Java VM

“Shared”
memory

“Session”
memory

“Call”
memory

new old stack run session

Interface Layer

Database libraries

Memory Manager

static libunit

Library Manager
Native Compiler

Java execution

Class loader

Dispatcher Pool

Java VM Class Loader

Session Memory Java VM/NCOMP

Call Memory

Shared Memory
Session Pool

Dispatcher

Dispatcher

Dispatcher

Worker Thread Pool

Thread

Thread

Thread

Connection
Manager

Shared
Library
Units

Local “Call”
Memory

hard circuit

Client Socket

Multiplexed
Circuit

Session

Session

Session

Session

Session

shared
memory

virtual
circuit

10 Java DEVELOPER’S Journal • VOLUME: 3 ISSUE: 11 1998

Figure 2: Multithreaded server architecture

11Java DEVELOPER’S Journal

Java. The JVM provides a CORBA Object
Transaction Service (OTS) and also
exposes a standard COSNaming interface.
Oracle8i provides an object adapter that
serves as a registry of CORBA objects
published in the RDBMS, and helps locate
and load CORBA objects upon initial acti-
vation by CORBA clients. It also provides
a number of features that make it easy for
Java programmers to develop CORBA ser-
vices, including Caffeine, a direct Java-to-

IIOP mapping that eliminates the need for
IDL definition, support for objects by
value and extensible structs, and a
number of tools that simplify applica-
tion development. Figure 3 illustrates
how Enterprise Java Beans and CORBA
services can be used in Oracle8i.

Summary
Oracle8i represents a revolutionary

new breed of product: a server platform

targeted specifically to simplify how you
build, deploy and manage Internet applica-
tions. It combines enterprise-scale sup-
port for SQL data (the shape of the Inter-
net’s data) and Java programs (the lan-
guage of the Internet’s behavior) in a high-
ly integrated, robust, easy-to-use package.
All of its components – the protocol frame-
work, the JVM and the data-management
facilities – are configured to run out of the
box and be managed with a single tool.
Oracle8i promises dramatic improvement
in how quickly and productively Internet
applications can be developed and
deployed.

About the Author
Thomas Kurian is director of Internet computing
at Oracle Corporation and is responsible for
formulating Oracle's database strategy in the Internet
and e-commerce marketplaces. Prior to Oracle,
Thomas worked at McKinsey and Company, an
international consulting firm. You can e-mail him at
tkurian@us.oracle.com.

Dave Rosenberg is senior director, Java products
group, Oracle Corporation, and heads the
development team responsible for the Java VM in
Oracle8i. Prior to Oracle, Dave led efforts to build
object-oriented databases at Object Design Inc. and
knowledge management systems at ISX Corporation.
You can e-mail him at darosenb@us.oracle.com.

Netscape 4
Browser

IIOP

http

Java Applet
IIOP, http

Net8

RDBMS
Dispatcher

ORB
Java VM
EJB TS

Security LDAP

JTS JIDL

Listener

SQL
PL/SQL

User-defined protocols

Application
Server

Thin JDBC

Figure 3: Using Enterprise JavaBeans and CORBA

tkurian@us.oracle.com darosenb@us.oracle.com

This month we’ll build a pair of high-
level widgets for application development.
JSplash is a simple splash-screen window
that displays a centered image for a time-
out period – until the user presses a key or
clicks the mouse. JTips automatically pre-
sents the user with a cycling set of tips at
application startup. The tips are loaded
from a simple text file, and JTips provides
options so the user can either disable it or
move through the list interactively.

The JSplash Window
Listing 1 shows the code required to

present a splash-screen image to the user.
The JSplash window is a fairly simple
object, but it has to handle a number of
circumstances correctly. Here’s a short list
of requirements:
• If the user does nothing, we should time-

out after a given period.
• If the user presses a key or clicks the

mouse, we dismiss the window.
• Startup conditions should be handled as

automatically as possible.
• Programmers should be able to display

the splash screen anytime.
• It should be possible to block until the

window gets dismissed.

Figure 1 shows an example of JSplash in
action.

If you look at the source code,
you’ll see that the image handling is
done through the ImageIcon class
and that the JLabel component is
used to frame the picture. We use a
simple BevelBorder to make sure
the image is visually in the fore-
ground and adjust the JWindow
bounds accordingly. The construc-
tor first loads the image file, then
calculates the position and size
required to center the window with
setBounds.

Once the image is loaded and the
window is properly positioned, we
register the JSplash class as a
KeyListener and MouseListener, reg-

istering the parent as a MouseListener as
well. Then we create a JFC Timer, which
has the specified time-out in milliseconds.
The Timer, which never repeats, will send
an ActionEvent when the time elapses, so
we register to receive this event as an
ActionListener.

With the exception of the block
method, the rest of the code merely imple-
ments the listener interfaces we registered
for. We capture each of the relevant events
and dismiss the window by making it invis-
ible before calling the dispose method.

The block method allows you to wait
until the splash screen is dismissed before
continuing (to avoid sequence problems).
The calling thread will block until the
splash screen disappears.

Listing 2 shows the JSplashTest class,
which demonstrates an important trick
you’ll have to apply to properly capture
keyboard events. First we create an arbi-
trary application frame and then the
JSplash window with the frame refer-
ence, image file name and time-out peri-
od as constructor arguments. After call-
ing the JFrame show method, we request
the focus again for the JSplash object. If
you don’t do this, pressing a key may
trigger something in the main applica-
tion frame without dismissing the splash

screen first – typically not what you
really want to occur.

The JTips Window
The JTips requirements are fairly sim-

ple. Show users a single text tip and allow
them to move forward, cycling each of the
tips in turn, and starting at the first one
when we reach the end. We also permit
them to dismiss the window and turn off
the automatic tips at application startup.
Figure 2 shows the visual result using an
example tip file.

Listing 3 shows the JTips source code.
The constructor first sets default dimen-
sions and centers the window on the
screen. We store the filename and proper-
ties arguments, allocate a vector to store
the tips and then call readTipsFile to han-
dle the file content. The rest of the con-
structor sets up the many panels that cre-
ate the visual design. Figure 3 shows how
these panels are nested to achieve the
desired effect.

We use the panels to control position-
ing and the effects of resizing. The shaded
left icon panel, title and button panel
always surround the tips panel and get
repositioned accordingly if the window
size changes. The navigation panel keeps
the buttons grouped together to the bot-
tom right of the window. The show check-
box is always at the bottom left.

Most of the remaining code in JTips is
dedicated to handling the tip text. We use
the tips Vector to store the sequence of

tips read from the file, and the Prop-
erties object to store the current
position in the list. This design
choice makes using configuration
files as easy as possible. Normally,
you’d save the application-related
properties in a file and load it when
the program starts. Permitting this
value to be passed into JTips keeps
the coupling to a minimum. JTips
stores two properties called
“tips.index” and “tips.show”.

The readTipsFile method opens
the tips file and reads each line
before closing it. Each line is pre-
processed by replaceParagraph-
Markers before being put into the
tips vector. The replacement code

JSplash & JTips
Add a splash screen to your

widget collection
by Claude Duguay

Figure 1: JSplash example window

Java DEVELOPER’S Journal14 • VOLUME: 3 ISSUE: 11 1998

Java DEVELOPER’S Journal16 • VOLUME: 3 ISSUE: 11 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

recognizes the “\p” and replaces it with
two new line (“\n”) characters. Since each
tip has to be on a single line, this allows
you to create multiparagraph tips when
needed.

A number of utility methods are also
implemented. The getNext and setNext
methods are accessors for the index prop-
erty. The getShow and setShow methods
do the same for the show property. The
increment method cycles to the next index
position and saves the new value. The
nextTip method actually takes the text
from the given index position and sets it to
be displayed, then calls increment to move
the index position forward.

Finally, we catch button events with the
actionPerformed method, which imple-
ments the ActionListener interface. The
three buttons toggle the show state, go to
the next tip or cancel (making the window
invisible). You can redisplay the window
by using the show or setVisible methods.
The startup method does this automatical-
ly if the show property is on. It can be used
in your main clause to make this virtually
transparent.

Listing 4 shows the source code for the
EdgeBorder class. The code is long but
simple and implements the Border inter-
face. We use it in JTips to draw the line at
the bottom of the title panel. EdgeBorder
draws an etched line to the north, south,
east or west, with the etching either raised
or lowered. Although we need only the
lowered north variation, it doesn’t make
sense to implement a border without a
proper design.

The EdgeBorder class has to implement
the getBorderInsets method as part of the
Border interface. We return a two-pixel
inset on the selected edge. We also imple-
ment isBorderOpaque to always return
true, and the paintBorder method to draw
the actual border. The code uses case
statements to decide which lines to draw
on the selected side. Each of the two lines

is shaded based on the background color
of the component in which the border is
used.

Listing 5 shows the code for Tip-
TextArea, which subclasses JTextArea so
as to control certain key properties more
effectively. We set the font, an empty bor-
der to control the margins, make the
editable property false, and set the word
wrap “on” and “word-based.” We also
return false for the isFocusTraversable
method so that the focus is never set on
this control.

The ApplicationTest Harness
Listing 6 shows code for the Applica-

tionTest class. Most of the work is done
intentionally in the main method to
demonstrate how you’d set things up in a
typical application. The constructor sim-
ply sets up the BackgroundPanel from List-
ing 7, which merely draws alternating blue
and dark-blue stripes in a panel so you can
see some contrast when you run it.

The ApplicationTest main clause cre-
ates an instance of itself and of the
JSplash widget and then centers the main
frame on the screen before showing it. We
call requestFocus on the splash window

to make sure we can capture keystrokes.
We then create a new instance of JTips
and call the JSplash block method to wait
until the splash screen disappears before
showing the tips windows. That’s all there
is to it.

In a real application you’ll probably
want to add a pair of “Help” menu items to
call up JSplash under “About…”, and to
redisplay the JTips window under “Tip of
the Day...”. We use the ellipsis (...) conven-
tion to tell the user they’ll be seeing a win-
dow when they select those menu entries.

Summary
This installment of the Widget Factory

provides a pair of useful components you
can add to your growing widget collection.
The splash screen adds an element of pro-
fessionalism to any application, offers an
opportunity for custom branding and facil-
itates a strength of identity for the product
with virtually no programming effort.

The JTips control is especially impor-
tant in applications that aren’t so obvi-
ous when the user sees the interface for
the first time. If your interface is difficult
to use, you should consider a redesign; if
it’s easy to use but nonobvious at first, a
simple Tip of the Day is precisely what
you need to help the user overcome
those small, early barriers as painlessly
as possible.

About the Author
Claude Duguay has been programming since
1980. In 1988 he founded LogiCraft Corporation,
and currently leads the development team at Atrieva
Corp. You can contact him with questions and com-
ments at claude@atrieva.com.

Figure 2: JTips example window

title
panel

tips
panel

center
panel

icon title

tips text area

show check box

icon panel

navigation panel
button
panel

Figure 3: Nested panels in JTips

claude@atrieva.com

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

“The splash
screen adds

an element of
professionalism

to any
application.”

18 • VOLUME: 3 ISSUE: 11 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

So I get to the office in the morning and see Mr. Job Prospect’s
résumé lying on my desk. That gives me about 20 minutes to think of
interview questions I’d like to ask him. A quick scan of the résumé
reveals that he’s done some serious work in Java that includes pro-
gramming with JFC, JavaBeans, Java threads, Java Applets – the
works. As usual, I decide to play devil’s advocate. That always throws
them for a loop.

After the regular stuff, which Job passes with flying colors, I ask,
“What’s so great about Java?” He gives me the look I’ve received from
several candidates – a look that says, “What a silly question! The
answer is obvious. Java is the coolest, OO-pumped, distributed,
reusable, superduper, kick-ass language there is.” The next question
really has Job questioning my sanity: “Why not use C++?”

Java is a very productive language that’s revolutionized busi-
ness computing. It’s a clean language that fosters good design prac-
tices and provides inherent support for object-oriented design.

However, it’s neither a panacea for all computing ailments nor the
utopia of the programming world. Choosing Java over other pro-
gramming languages comes with its own share of compromises and
trade-offs. A common misconception is that Java is here to replace
C++ (and every other language) and is going to be the only lan-
guage in the marketplace. Java is certainly making an unprece-
dented impact in the computing arena. But a large part of the com-
puting problems that the Java programming language addresses
are ones that have appeared with new computing paradigms. Most
programming languages that manage to survive more than a cou-
ple of years in the computing marketplace have merits and unique
strengths that make them ideal for their turf. Java is in the process
of defining its turf and is doing a pretty good job. However, it does-
n’t provide a solution for every problem in every domain.

In this article I’d like to discuss a couple of features and idio-
syncrasies of Java and the costs of their usage. We’ll look at the
lack of multiple inheritance in Java, garbage collection, references

Java is doing a pretty good job of
defining its turf, but it doesn’t provide

a solution for every problem

JDJ FEATURE

The Java
Programming

Language

Trade-offs
by Ajit Sagar

19VOLUME: 3 ISSUE: 11 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

and an interesting peculiarity of Java’s
method scoping.

To Multiply Inheritance or Not?
One of the main language features that

the designers of the Java lan-
guage decided to drop off the
plate was multiple inheri-
tance. Inheritance in the con-
text of object orientation is an
“is–a” relationship. Multiple
inheritance implies an
“is–also–a” relationship.
When a class inherits behav-
ior and state from more than
one class, we run into multi-
ple inheritance. The real
problem in multiple inheri-
tance arises when the derived
class inherits the same state
(or member variables) from
two different superclasses.
This is known as the infamous
DDD (Deadly Diamond of
Death) and is illustrated in
Figure 1. The problem sur-
faces when the derived class
refers to the variable foo.
Does it refer to Super1.foo or
Super2.foo? Multiple inheri-
tance increases the complexi-
ty of the code as well as the
compiler.

Java avoids this problem
by enforcing a policy so that a
class can inherit state and
implementation from only
one superclass. This doesn’t
preclude the class from inher-
iting pure behavior from mul-
tiple interfaces. The mecha-
nism of inheriting state
and/or behavior from a super-
class is called class inheri-
tance. The mechanism of
inheriting pure behavior from
a superclass is called inter-
face inheritance. Java pro-

vides constructs to distinctly specify one or the other – the corre-
sponding keywords in the language are interface (pure behavior)
and class (state and/or behavior). Since the superclass methods
have no implementation in the declaring class, the implementa-
tions for the methods defined in the superclasses have to be pro-
vided in the derived class. Hence a class in Java can simultaneous-
ly inherit from several interfaces and one single class. This is
shown in the following class declaration:

public class Derived extends Super implements Interface1, Interface2

The class Derived inherits state and behavior from Super and
has to provide implementations for the methods declared in Inter-
face1 and Interface2. In most programming scenarios this stipula-
tion leads to well-designed programs. However, there are cases in
which it would be convenient to inherit state and implementation
from more than one class. Consider a situation in which you have

to write a small class (with maybe five additional methods) that
extends the functionality of two classes – Super1 and Super2. This
situation is common if you’re using third-party class libraries or
legacy code in which the implementation is already provided. Since
you can only inherit the state and implementation from one super-
class, you’ll have to do the following to reuse the functionality of
the other two classes:
• Write interfaces that define the method signatures of the super-

classes. Let’s call them Interface1 and Interface2. Chances are,
these interfaces will be available to you with the third-party or
legacy code. However, you might just get the compiled class
itself.

• Extend Derived from Super1 and implement the interface of
Super2.

• Define a reference to an object of type Super2 in Derived.
• Provide “wrapper” methods to delegate every method in Inter-

face2 via the instance variable.

This mechanism is illustrated in Listing 1. The first two class
implementations show Super1 and Super2. It’s assumed that these
implementations are already available and need to be extended by
Derived. The next section of the listing shows the interface for
Super2. Finally, the implementation of Derived is shown. Derived
extends Super1 and implements Interface2 for Super2. Note that
Derived doesn’t have to provide wrapper methods for Super1 as it
extends the implementation. However, for every method in Super2,
Derived has to provide a wrapper method that delegates the call to
the local reference to an object of type Super2.

Now consider that Super2 has 30 methods. To make matters
worse, suppose that Derived needs to extend the functionality of
another superclass with another 30 methods. Derived will have to
provide 60 methods that do nothing but provide wrappers for
existing implementations. This produces a “class bloat.” You’ll also
notice a “class creep.” Note that you needed to declare an extra
interface for Super2. This may seem a small price to pay, but con-
sider that in this scenario, to inherit a class, you have to add an
interface. If you scale this to a large project, you end up with a large
number of class/interface declarations.

If we had multiple inheritance in this case, all we’d need to do
for Derived would be something like this:

public class derived extends Super1, Super2
{

// Only code specific to Derived class goes here
}

Using single versus multiple inheritance is illustrated in Figure
2. In the figure the black arrows represent inheritance from a super-
class to the derived class; the red arrows indicate interface imple-
mentations; the green lines, delegation.

It would be nice if the language had a mechanism for directing
the compiler that indicated to the compiler that a class is a dele-
gate for another class. This would at least prevent the need for
derived classes to provide all the wrapper methods.

Garbage Collection
One of the major productivity gains in using Java for development

came about because Java doesn’t require the programmer to manage
memory deallocations. In a pure Java program there’s no such thing
as a memory leak. Memory is allocated at instantiation; however, it’s
automatically released by Java’s garbage collector. Freeing an object
in Java is a simple task of setting its reference to null. The garbage col-
lector frees the memory when it next collects garbage.

This is a nice scheme that makes programming easier and less
prone to errors. The caveat is that the programmer has no control

20 • VOLUME: 3 ISSUE: 11 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

over when the garbage collector runs. It
runs at the discretion of the Java Virtual
Machine. Typically, it runs periodically and
“cleans up garbage.” Different VMs support
different strategies for garbage collection. The
bottom line is that memory is reclaimed when
there’s no longer any references to it.

Garbage collection works well in most
programming situations. However, lack of
control over memory deallocation some-
times presents interesting problems. The
two main ones are in memory-constrained
and real-time applications. Since the pro-
grammer has no control over exactly when
memory is released, applications that are
severely memory-constrained will have to
rely on the garbage collector to free up
memory fast enough so that no significant

performance penalties have
to be paid. This is typically
not a problem as garbage
collection algorithms have
been around for a while now
and are usually very effi-
cient.

In real-time applications
the problem has to do with
the system resources that
the garbage collector is
going to consume when it
runs. In these applications
timing is critical, and the
slowdown caused by the
garbage collector may not
be acceptable. Since there’s
no way to predict precisely
when the memory is going
to be freed, i.e., when the
garbage collector is going to
be activated, finding a
workaround is a daunting

task. The Java Runtime class provides a
method gc() to facilitate garbage collection.
A call to gc() may be made as follows:

// Tell the garbage collector to free up memory
System.gc();

The purpose of this method is often mis-
understood. Calling gc() doesn’t deallocate
memory. It’s merely a hint to the VM to run
the garbage collector as soon as it can.
When the garbage collector actually runs
depends on the runtime environment and
the implementation of the garbage collector.

References
Garbage collection is based on deter-

mining when an object in the runtime

process is no longer in use. In a Java appli-
cation all handles to memory allocated by
the application are via references to the
corresponding objects. The task of the
garbage collector is to identify the refer-
ences to objects no longer in use and to free
the memory allocated to those objects. A
runtime Java application contains all the
objects created during program execution,
which are stored in a root set of references.
As long as a reference is in the root set, the
object is reachable by the program. Once
the object is freed (either by setting the ref-
erence to null or by the object’s finalize()
method), it’s ready for garbage collection
(as long as no other references still point to
the object). At this time the object is
unreachable. Unreachable objects are
ready for garbage collection.

JDK 1.2 introduces a new API that sup-
ports a finer grain of control for Java pro-
gram’s interaction with the garbage collec-
tor. This API, called Reference Object API,
is in the package java.lang.ref. The refer-
ence object encapsulates a regular refer-
ence to a Java object (known as a referent).
The Reference Object API allows develop-
ers to define degrees of “reachability.”
Besides defining an object as reachable or
unreachable, the API also defines the fol-
lowing reference types (in order of reacha-
bility): Soft reference, Weak reference,
Phantom reference.

A detailed discussion on the Reference
Object API is beyond the scope of this arti-
cle. The impact on garbage collection is
that the weaker the reference, the more the
incentive for the garbage collector to free
its memory. Creating appropriate refer-
ences using the Reference Object API gives
the programmer more control over what
memory is freed by the garbage collector. A
good source for more information on Java
references is http://java.sun.com/docs/
books/tutorial/refobjs/index.html.

An Observation About
Method Scoping

I’d like to wind up this discussion with
an interesting aspect of Java method scop-
ing that one of my colleagues accidentally
discovered. In JDK 1.01 Java supported a
keyword private protected. Methods
declared with the private protected qualifi-
er were visible only to their inherited class-
es. This keyword disappeared in JDK 1.1.x.
Currently the following scopes exist for a
method:
• Private – A private method is visible only

to methods in the declaring class (or in
classes inside the declaring class).

• Package – A package scope is the default
and is in effect if none of the visibility
keywords (private protected or public)
qualifies the method. A method withFigure 2: Multiple inheritance versus delegation

Super1

Multiple Inheritance Delegation

Super2 SuperN Interface1 Interface2 InterfaceN

Super1

Super2

Super3
Derived

Derived

Figure 1: The Deadly Diamond of Death

Base Class

Derived

Super1 Super2

Object foo

22 • VOLUME: 3 ISSUE: 11 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

package scope is visible to methods in
the declaring class and all classes in the
package. Note that it’s not visible to
inherited classes that are not in the pack-
age.

• Protected – A private method is visible to
methods in the declaring class, all sub-
classes of that class and in all classes in
the package.

• Public – A public method is visible to
methods in all classes in the application.

None of these method-visibility quali-
fiers limit the visibility to classes’ direct
inheritance hierarchy. For example, con-
sider the following inheritance hierarchy:

public abstract class Base
{

// Declarations and code

// Declaration of foo
<Scope Modifier> void foo();

// more code
}

public class Derived extends Base
{

// Declarations and code

void foo()
{

// implementation

}

// more code
}

The Scope Modifier could be one of the
keywords – public, protected – or neither
(which implies default package scope).
None of these limit the visibility of the
method foo() to just these two classes. If
the qualifier is protected or default (no
qualifier), foo() is still visible to at least
other classes in the package. What this
means is that to limit the visibility to
direct inheritance hierarchies, you’d have
to package each inheritance hierarchy
separately, i.e., Base and Derived would
have to be in a separate package and the
method qualifier used would be protected.

There is a way to limit the scope. If I
change the code excerpt above to the fol-
lowing, the scope will be limited to direct
hierarchy:

public abstract class Base
{

// Declarations and code

abstract private void foo();

// more code
}

public class Derived extends Base

{
// Declarations and code

private void foo()
{

// Implementation
}

// more code
}

Declaring the method private makes it
invisible to all classes except Base. Declar-
ing it abstract, however, requires that a
derived class provide an implementation
of the method. The method is callable only
from Base and Derived. The scoping rules
are contradictory. A private modifier limits
the scope to the declaring class only. Sub-
classes are excluded from the scope of the
method. However, the abstract modifier
apparently negates the stipulation.

About the Author
Ajit Sagar is a member of the technical staff at i2
Technologies in Dallas, Texas. A Java certified
programmer with eight years of programming
experience, including two in Java, he holds a BS in
electrical engineering from BITS Pilani, India, and an
MS in computer science from Mississippi State
University. Ajit can be reached at Ajit_Sagar@i2.com.

Ajit_Sagar@i2.com

// Super1 implementation. This is already available.
public class Super1
{

void method1()
{

// Implementation code here
}

// Other methods
}

// Super class 2 implementation. This is already available.
public class Super2
{

void method2()
{

// Implementation code here
}

// Other methods

}

// Super class 2 interface. You have to write this.
public interface Interface2

{
void method2();

// Other methods declarations
}

// Derived class implementation.
public Derived extends Super1 implements Interface2
{

// variable to store instance of Super2
Super2 super2 = new Super2();

// wrapper method for method2
void method2()

{
super2.method2();

}

// wrapper methods for all other Super2 methods

}

✦ LISTING 1: Working Around the Lack of Multiple Inheritance in Java.

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

It’s that time of year again – the time
when we all pretend to get along with one
another for a few weeks. It’s the time for fam-
ilies to come out of the woodwork, for get-
ting out that knitted pullover from the Aun-
tie whose name you can never quite remem-
ber. I can’t wait until the New Year comes
round again so we can go back to disliking
people. Bah humbug!

Season’s greetings to one and all. Actual-
ly, contrary to popular belief, I love this time
of year. Over here in Scotland we generally
get a white Christmas, and it’s been known
for me to get all “Bing” and burst out in
floods of unrecognizable notes – which is
never a bad thing!

Before We Get to What If…
It’s Alan Williamson and here we are for

another column of “Straight Talking.” This
has been an interesting month for me, one
that has found me in all four corners of the
world. My regulars will know that I usually
take a characteristic and focus an article on
it, contrasting it to our world of Java. Well,
this month is going to be no different. I think
we’ll plump for dreaming. The ability to play
“What if?” games. You know the sort: “What
if I won a million dollars?” or “What if I was
the best Java programmer in the world?”
(We all think we’re the best, so maybe that
wasn’t a good example.)

Anyway, this month my business took me
back to Tokyo, and then over to Sydney, Sili-
con Valley, Boston and then finally New York.
This was only my second time in Silicon Val-
ley; the first time was when I was at JavaOne
last year. But back then I never got a chance
to look around the place – well, that’s not
exactly true!

I’m not sure how many of you have ever
visited Silicon Valley. I suspect the majority
of you have. Therefore you know what it is,
and, more important, what it is not. I’ve been
in this industry for many years, and during
that time I’ve had this picture of Silicon Val-
ley – a picture, I discovered, that was shared
by many who’ve also never been there. I
assumed Silicon Valley was one big industrial
park set in acres of lush green gardens with
signposts pointing to all the big players in
the computing industry. Was I in for a shock!

The reason I missed it the first time
around was that I was actually looking for
such a place. I think I must have gone to
every shopping mall trying to find the infa-
mous “Silicon Valley.” Time beat me then, so
this time I got me a proper tour guide. James
Davidson from Sun kindly lent me his know-
how and drove me around Silicon Valley,
pointing out all the major headquarters of
the companies that shape our industry.

James showed me the offices of Sun,
Apple, IBM, Netscape, Oracle and HP, to
name some of the big boys. Each building, or
set of buildings in some cases, was very
impressive – and breathtaking when you
think that what’s potentially happening
inside those buildings will affect every one
of us and how we work. We have companies
working on hardware, browsers, networks,
databases and, most important, Java – all
within a few miles of each other.

The Truth About Silicon Valley
For those of you who shared my view of

Silicon Valley, let me tell you it’s not like that
at all. It’s not one big industrial/business
park. In fact, Silicon Valley is the name given
to a region that technically doesn’t exist. No
map displays it. No signposts point to it. It’s
a collection of towns that among them house
the most important and influential compa-
nies in the world.

I went to Boston next to drop in on one of
the students we sponsor at Worcester Poly-
technic Institute. I recounted the vision of
Silicon Valley to Shahzad, and he agreed with
me that his vision was somewhat aligned
with mine. Then we got talking, and it’s here
that I’d like to bring you in.

Our discussions took us many a place,
most of it dreaming, thinking about exciting
innovations coming from that wee corner of
California. Then it took on a sinister tone. We
got worried. Here’s where I posed the ques-
tion, “What if we woke up one morning and Sil-
icon Valley was no longer there?” The two of us
just stared at each other for a moment, each of
us mentally calculating the impact that “What
if” would have on the world as a whole.

Now, we know the chances of this actual-
ly happening are small. We all know that the
entire state of California is on a famous fault

line, the San Andreas Fault. One of the
biggest misconceptions about this particu-
lar fault line is that one day California will fall
into the sea. Before writing this article, I did
some research into it and came up with
some interesting facts and figures. For exam-
ple, California will not fall into the sea, but
instead it is moving up toward Alaska and
Canada at a rate of around 35 mm a year. So
Bill Gates is going to have Scott McNealy as
a neighbor after all!

Second, in the last 10 years California has
experienced around 20,000 tremors. Granted,
most of them have been small, but consider-
ing that every point in California is only 30
miles away from a major earthquake zone,
you have to wonder whether Mother Nature
engineered Silicon Valley to be where it is as
part of her global natural selection program.

On another note, in Cold War times it was
rumored that most of Russia’s missiles were
aimed at California. This would have wiped
out most of the entertainment and comput-
ing industry. Couple that with the earth-
quakes, and suddenly old California doesn’t
look so appealing.

But back to the question I posed. What if
we woke up one morning and suddenly the
headquarters of Sun, Netscape, Apple and
Oracle were no longer there? Everything was
lost. How would this impact the rest of us?

Would Java Die?
Since we’re all in the Java world, let’s look

at what might happen with Java. As we know,
most of the major API development is per-
formed on De Anza drive in Cupertino, at Sun.
Now let’s take Sun out of the picture. They’re
gone. Let’s assume they lost all their top engi-
neers, and their satellite offices didn’t have
the know-how to continue core development.

I don’t think Java would die, but it would
be a very different Java world from what we
know now. Java would probably splinter into
x different versions and go the way UNIX did
back when it was released. Every major IT
company in the world would assume respon-
sibility and start supporting their new flavor.

Microsoft is a prime example of a compa-
ny that would like (and is trying) to own Java;
IBM is another. Each of these chaps has huge
amounts to gain by controlling the Java plat-
form. Microsoft fears Java will threaten its
dominance in the PC marketplace, so it’s try-

Hmmmmm…What If?

STRAIGHT TALKING

An unsettling question
by Alan Williamson

24 • VOLUME: 3 ISSUE: 11Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

25VOLUME: 3 ISSUE: 11 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

26 • VOLUME: 3 ISSUE: 11Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

ADVERTISER INDEXADVERTISER INDEX
4thpass 15
www.4thpass.com 206 329-7460

ColdFusion Developer’s Journal 52
www.sys-con.com 800 513-7111

Distinct Software 23
www.distinct.com 408 366-8933

EnterpriseSoft 11
www.enterprisesoft.com 415 677-7979

Enterprise Solutions Event 51
www.eventinfo.zdevents.com 888 528-2397

Flashline.com 21
www.flashline.com 216 861-4000

Inprise Corporation 55
www.inprise.com 408 431-1000

JHL Computer Consultants 49
www.jhlcomp.com 954 845-9967

Jinfonet 12
www.jinfonet.com 301 983-5865

KL Group Inc. 23
www.klg.com 800 663-4723

KL Group Inc. 68
www.klg.com 800 663-4723

Advertiser Page
Kuck & Associates 31
www.kai.com 888 524-0101

LPC Consulting Services 59
www.ilap.com/lpc 416 510-1660

MindQ 35
www.mindq.com 800 646-3008

Object Matter 39
www.objectmatter.com 305 718-9101

ObjectShare 13
www.objectshare.com 800 973-4777

ObjectSpace 67
www.objectspace.com 972 726-4100

Object Management Group 53
www.omg.org 508 820-4300

ParaSoft Corp. 29
www.parasoft.com/jtest 888 305-0041

Pervasive Software 17
www.info@pervasive.com 800 884-6265

PowerBuilder Developer’s Journal 59
www.sys-con.com 800 513-7111

PreEmptive Solutions 61
www.preemptive.com 216 732-5895

ProtoView 3
www.protoview.com 800 231-8588

Rogue Wave Software 2
www.roguewave.com 303 473-9118

Sales Vision 37
www.salesvision.com 800 275-4314

Schlumberger Ltd. 4
www.cyberflex.slb.com 800 825-1155

Slangsoft 43
www.slangsoft.com 972 375-18127

SunTest 65
www.suntest.com 415 336-2005

SYS-CON Radio 63
www.sys-con.com 800 513-7111

The Object People 45
www.objectpeople.com 919 852-2200

Visionary Solutions, Inc. 59
www.visolu.com 215 342-7185

Wall Street Wise Software 59
www.wallstreetwise.com/jspell.html 212 348-5031

Zero G Software 6
www.zerog.com 415 512-7771

Advertiser Page Advertiser Page

ing everything in its arsenal to taint Java and
make it difficult for its programs to run. Any-
one who’s coded an applet for IE4 knows only
too well that the same applet for Netscape
will not run half as sweetly as in IE4.

Microsoft has dismissed the idea of a
Java station as impractical, and is very keen
to promote its WinTerm as an alternative.
Chances are this will succeed. Why?
Because, let’s be honest, we have very little
choice. Big corporations will stick with solu-
tions already in place, and NT is gaining mar-
ket share rapidly. Does that mean we as Java
developers are going to have to face the
Microsoft classes at some point in our
careers? Hopefully not.

Now, assuming that in our game here
Netscape is also taken out of the game
means the browser war is effectively over. IE
will become the de facto, nay, the only
browser available. So we can conclude that
taking Silicon Valley and removing it from
the face of the earth would make a signifi-
cant difference.

It’s been fun for me to research this arti-
cle. I’ve had conversations with people in
San Francisco, New York, London and Syd-
ney. Some were CEOs of Java companies,
some were developers; some CEOs had
nothing to do with Java but were major
users of large installations of Java.

I’m not going to quote anyone here as

that wouldn’t be fair, but let me just say that
it was easy to spot which companies didn’t
want to bite the hand that fed them. The
ones proclaiming it wouldn’t make a bit of
difference were found to like Microsoft that
little bit too much. The ones who said it
would make a difference were the ones that
had no alliance or allegiance to Microsoft at
all. Not exactly hard science, you under-
stand, but like I said, the answers I gleaned
did make me chortle at times.

But It’s a Game. It’s Unrealistic.
Or Is It?

Who remembers that brilliant movie It’s
a Wonderful Life starring James Stewart? Do
you remember the storyline? Basically it’s
about a man, George Bailey (James Stew-
art), who’s got to the end of his tether and
wants to commit suicide. This is because all
his life he’s been trying to run a business
under the constant strain of the mean Mr.
Potter, the richest man in the county. Mr.
Potter is determined to put George out of
business and tries a number of tricks. Final-
ly George gives up and can’t see a way for-
ward.

Do you remember what happens?
Clarence, his guardian angel, comes down
and shows him a world without George. The
town is no longer called Bedford Falls but
Pottersville. Everything is owned and con-

trolled by Mr. Potter and the place is in a
right old mess. So, in good old movie tradi-
tion, George sees the error of his ways,
returns to his old life and discovers that the
whole town has rallied around to help him
out. It’s a sweet story, but one that I couldn’t
help but see has some parallels for our own.

In our world we have Mr. Gates, who
would be Mr. Potter, with Scott McNealy tak-
ing on the James Stewart role. With that in
mind pick up a copy of the film and watch it
again. The movie takes on a completely new
meaning. Especially the scene where Mr. Pot-
ter tries to buy George off. Considering the
current events in the media with Sun and
Microsoft, it hits a recognizable note.

This dream has turned out to be a bit of a
nightmare. A silly off-the-cuff remark sparked
a whole lot of dialog that got everyone I was
in contact with thinking about the bigger pic-
ture. Bottom line: if Microsoft got control of
Java, it would lose one of its basic funda-
mentals – the ability to “write once, run any-
where.” We as Java developers and keepers
of the faith simply can’t let this happen.

About the Author
Alan Williamson is the CEO of N-ARY Limited, a
UK-based Java software house. He can be reached
at alan@n-ary.com (www.n-ary.com).

alan@n-ary.com

27VOLUME: 3 ISSUE: 11 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

The Most Important Features for Java Developers

Delivering on the Promise of Java
Java would not have achieved the

momentum it has today without delivering
one key benefit: platform independence.
Today, more corporations are facing the
challenge of integrating disparate environ-
ments. This challenge is growing even more
with the increasing number of mergers and

acquisitions. NationsBank, featured in this issue of JDJ, is a
prime example of this integration challenge. Acquiring new
banks on a regular basis, including its recent merger with Bank
of America, NationsBank turned to Java
to bridge its different systems and allow
them to work together. When it comes
to customers and assets, organizations
need reliable, accurate and timely sys-
tems in place, and developers need the
right tools to deliver those systems.

It’s All About Pure Java
We created JBuilder, our award-win-

ning rapid-application development tool
for Java, to include features that devel-
opers have asked for most, including an
intuitive user interface, a fast compiler,
a complete graphical debugger, Java-
Beans with source code, a reliable data-
base architecture, easy creation of Java-
Beans, tight CORBA integration and full
support for Java standards. After talking
to our customers, however, we discov-
ered the feature they found to be most
important was 100% Pure Java code creation for true platform-
independent applications. This feature alone was key for cus-
tomers like Oracle, NationsBank (whose application is high-
lighted in this issue), Daiwa Securities and others. These com-
panies chose JBuilder after closely evaluating several other
Java development tools. These other tools add proprietary
code or markers to the existing Java code to synchronize the
visual designers and the source code. If changed, this non-Java
code will break the synchronization between the two and will
make a developer’s files unreadable to visual designers, thus
causing developers to lose all their work. We created JBuilder
to ensure that Java programmers have the most productive,
reliable tool to deliver platform-independent, 100% Pure Java
applications – no markers or proprietary code added!

Infrastructure Is Key
Java developers also told us they needed a strong support-

ing infrastructure to ensure their success. Java wouldn’t be suc-
cessful today if it weren’t for its huge infrastructure that
includes major third-party partnerships, books, magazines,

training, consulting, support, third-
party tools, newsgroups, literature and
Web sites. As with Java, JBuilder
wouldn’t be the market leader today if
it weren’t for its impressive supporting
infrastructure. Before we shipped the
first version of JBuilder, over 6,000 developers were already
developing Java applications with the preview versions of
JBuilder 1. Among them were the leading JavaBeans vendors
such as KL Group; major software companies such as Oracle
and IBM; corporate and independent developers such as Daiwa

Securities and MicroAge; and leading
universities like MIT, Purdue and UCLA.
JBuilder’s growing infrastructure is
already the most impressive of all Java
development tools and includes hun-
dreds of third-party tools, dozens of
books, an active Java developers’ com-
munity that shares tips and techniques
on over 20 dedicated newsgroups, a
growing number of certified trainers and
consultants, state-of-the-art technical
support, multimedia training, an educa-
tional version (JBuilder University Edi-
tion)…and the list goes on.

Evaluation Made Easy
Surprisingly enough, the third most

requested feature for JBuilder was for
an evaluation kit. A product may be the
best development tool available, but if
developers can’t get their hands on it to

evaluate it, chances are they won’t even consider using it.
Today, Inprise and Java Developer’s Journal make it easy for
Java developers to evaluate JBuilder. With this issue of JDJ
you’ll have the complete JBuilder 2 evaluation kit CD. The CD
includes a 60-day trial edition of JBuilder 2 Client/Server Suite,
which will let you build scalable enterprise applications; Visi-
Broker for Java, which will allow rapid building of multitier
CORBA applications; Referentia for JBuilder 2, Volume I, an inte-
grated multimedia training tutorial; an Evaluator’s Guide; case
studies, technical white papers, JBuilder tips and techniques;
and more. The CD includes everything professional and cor-
porate developers need to successfully evaluate a 100% Pure
Java code-creation development tool.

About the Author
Michel Gerin holds an MBA in marketing and a BS in computer science. He
is senior product manager for JBuilder at Inprise Corporation, and can be
reached at mgerin@inprise.com.

mgerin@inprise.com

FROM THE INDUSTRY

J
B

U
ILD

E
R

 F
O

C
U

S

by Michel Gerin

“...most important

was 100% Pure Java

code creation for true

platform-independent

applications.”

28 • VOLUME: 3 ISSUE: 11 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Around the time Java
made its mark on the
world of programming
there came to be another
phenomenon, the IDE.

Gone were the days of
typing code, compiling,

wondering what went wrong,
typing more code, recompiling and so on.
The IDE presented the application builder
with an unprecedented tool, useful not only
for application building but for learning as
well.

I found I could learn more about Java
code when I started using IDEs. I’d use the
drop-and-drag editor to add something to
an existing application, compile and run it,
then look at the source code to see what I’d
just done. It provided a neat little shortcut
to learning more about objects, events and
such. I’ve had the opportunity to work with
most of the IDEs that have come our way in
the past couple of years, and always tried
to see what I could learn from them.

Recently I was given the opportunity to
work with JBuilder from Inprise. Not only
did I think it was a good application devel-
opment tool, I found it exceptionally useful
as a learning apparatus as well.

System Requirements
• Intel Pentium/90 MHz or higher
• Windows 95 or NT 4.0
• 48 MB of RAM (64 MB or higher recom-

mended)
• 100 MB of hard disk space (minimum

install)
• CD ROM drive
• SVGA or higher resolution monitor

(800x600)
• Mouse or other pointing device

I installed on a Cyrix 150 with Win95 and
64 MB of RAM. The installation CD has an
“Auto Run” file that brings up a menu as
soon as the CD is placed in the drawer. The
standard Installation Wizard made installing
JBuilder as easy as pie!

Finding Your Way Around
I found JBuilder remarkably user friend-

ly. Upon opening, I was greeted with a
friendly “Welcome Screen” that, if neces-
sary, can guide the user through a series of
“Welcome Projects,” as seen in Figure 1.
These made getting familiar with JBuilder
quick and easy. The projects consist of a
couple of quick applications built as tutori-
als. After using them, even an inexperi-
enced Java programmer will have the confi-
dence to use JBuilder. Any last-minute
pointers or changes from the previous ver-
sion are presented in the Welcome Screen
as well.

The Welcome Screen is displayed in
what is known as an “App Browser,” a win-
dow that allows you to “browse” through all
the files and projects created with JBuilder.
It allows you to browse, edit, design and
debug these files. The App Browser con-
tains three panes:

• The Navigation Pane: Located on the
upper left of the screen, it displays a list of
files that may include .java, .html, text or
image files. If a project is made current, the
Navigation Pane will also display the .jpr
files (the default extension for JBuilder
projects).

• The Content Pane: Located on the right
side of the screen, it displays the
detailed contents of the file selected in
the Navigation Pane. This pane has var-
ious types of viewers at its disposal, the
use of which depends on the file select-
ed. For example, selecting a text file in

PRODUCT REVIEW

JBuilder
by Inprise

An IDE that features both power and ease of use

by Ed Zebrowski

Figure 1: The user is greeted with a “Welcome Projects” screen, a guide through JBuilder.

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

JBuilder
Inprise

100 Enterprise Way

Scotts Valley, CA 95066-3249

Phone: 408 431-1000

Web: www.inprise.com/jbuilder

Price: $2,495 (client/server suite version)

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

J
B

U
IL

D
E

R
 F

O
C

U
S

http://www.JavaDevelopersJournal.com• VOLUME: 3 ISSUE: 11 1998Java DEVELOPER’S Journal30

the Navigation Pane will prompt the
Content Pane to display that file in a
text editor, similar to the Windows
Notepad. If an image is selected, say a
jpg, an image viewer is opened and dis-
plays the file. If the image needs to be
changed before use in your application,
you’ll have to do that in another editor,
as the JBuilder image viewer doesn’t
have editing capabilities. The Content
Pane gets interesting when a .java file is
selected from the Navigation Pane. In
this case four tabs are displayed on the
bottom of the pane: the Source Tab
selects the JBuilder Editor, a syntax-
aware programming editor that features
several key mappings; the Design Tab
calls JBuilder’s UI Designer (see Figure
2), which shows how user interface of
the class will look at runtime (here it’s
possible to visually construct and alter
your application); the Bean Tab exposes
the BeansExpress Property, Event, Bean-
Info and Property Editor designers used
to add properties and events to your
bean, choose what properties are
exposed or create custom property edi-
tors; the Doc Tab displays the corre-
sponding reference documentation for
that .java file if available (given in HTML
format).

• The Structure Pane: Located in the
lower-left pane of the App Browser, it
shows structural information about the
file selected in the Navigation Pane. If a
.java file is selected in the Navigation
Pane, for example, the Structure Pane will
show imported packages, classes and
interfaces on the file, ancestor classes,
variables and methods (given in the form
of a hierarchical tree). When one of the
structural elements is clicked, the Con-
tent Pane will move to and highlight that
element in the source code. This comes
in handy as a way of finding elements in
the .java file.

Above the App Browser is the Main Win-
dow, which contains all the necessary tools
for application development. Among them
are:
• The Toolbar: Provides shortcuts for

some of the menu commands such as
Open, Close, Save File, Undo, Redo,
Search Replace, Run and Debug.

• The Component Palette: Displays com-
ponents used in the design. Components
can be added to the existing pages or new
ones can be created for them. Some of
these are JBCL, JBCL Containers,
dbSwing, Swing Containers, AWT and the
KLGroup.

• The Status Bar: Appearing at the bottom
of the Main Window, it displays file save
and compilation progress messages.

Using JBuilder
After taking a few minutes to get com-

fortable moving around in JBuilder, I found
it just as easy to develop applications in it.
Let’s develop a quick, basic application
just to get a feel for how easy it can be to
use.

First you open a new project by click-
ing File-New and then double-clicking the
Application icon. There’s an icon for
applets too, if that’s your choice. This will
open a simple dialog box that contains
five fields. In the top field type the entire
path to the location of the project files
(for example, C:\JBuilder\myprojects\
project1\project1.jpr). The other four
fields are for title, author, company and a
brief description, if you so desire. After
these fields are filled in click Finish, which
will generate the .java files that go into the
project “skeleton.” If the applet Wizard is
used, a corresponding HTML file will be
generated as well. Clicking Finish on this
dialog box will then open the Step One
Wizard dialog box, which requires you
only to enter the name of your class in the
appropriate field. There are two checkbox
options: “Use only core JDK and Swing
classes” and “Generate header com-
ments.” Clicking Next opens the Step Two
dialog box. If you’re building an applica-
tion rather than an applet, here’s where
the window properties are set. The check-
box options here include “Generate menu
bar,” “Generate tool bar,” “Generate status
bar,” “Generate about box” and “Center
frame on screen.” Upon clicking the Finish
button, new .java classes are added to the
project.

Now it’s time to use the UI (user inter-
face) Designer. Clicking the newly created
.java file in the Navigation Pane will bring
up the source code in the Content Pane.
Clicking on the Design Tab will bring up the
UI Designer. Here it’s possible to assign
menu options, generate text fields and add
buttons or dialog boxes. Events and prop-
erties are easily assigned by clicking the
appropriate tab on the Component Inspec-
tor on the right-hand side of the Content
Pane.

More Than Just a Beginner’s Toy
Up to now, I’ve gone on about how easy it

is to use JBuilder. Don’t let this mislead you.
Although JBuilder can be very simple to use,
it includes a powerful arsenal of tools for the
advanced builder as well. Some of the more
sophisticated tools allow you to:
• Create distributed applications with Java

RMI.
• Define CORBA interfaces with Java.
• Create data-aware components.

It’s getting to the point where choosing an
IDE can be a mind-boggling task. It’s really
impossible to sit down and try them all.
JBuilder is an excellent choice for both the
beginner and pro. Use it for a while and you’ll
agree; there’s no need to look any further.

About the Author
Edward Zebrowski is a technical writer based in
the Orlando, Florida, area. Ed runs his own Web
development company, ZebraWeb, and can be
reached on the Net at zebra@rock-n-roll.com.

Figure 2: The UI designer makes it easy to add interactive components to your application or applet.

zebra@rock-n-roll.com

J
B

U
IL

D
E

R
 F

O
C

U
S

http://www.JavaDevelopersJournal.com

I wish I had a nickel for each time I’ve had
to explain to a new vendor or professional
acquaintance that, just because I have the
word “Bank” in my company’s name –
NationsBank – I don’t spend my time deal-
ing with huge, monolithic, batch-processing
systems. (Sure, we have these systems. And
yes, they’re still in use.) However, there are
large groups within our bank whose purpose
is to explore the leading edge of technology.
Our work centers on incorporating this tech-
nology, both tactically and strategically, in
production systems. As most of these sys-
tems are for internal use, few people see
them unless they work with us.

Evolution of the Bank’s Information
Technology Departmental Structure

While the details of the systems we devel-
op are confidential (they’re part of our com-
petitive business advantage), I’d like to
share with you our experiences concerning
architecture, tooling and how our develop-
ment environment has evolved. To do this
properly, I first have to explain who we are
within the bank structure, how we started
and how we’ve evolved. Next I’ll examine
how our architecture has evolved into its
current form. Finally, I’ll discuss the tooling
we use to develop this architecture and how
I envision it must evolve from today. Please
remember that this is a work in progress.
What I’m describing here is the culmination
of years of work and is presented with a
deliberately blind eye to any missteps along
the path to here.

The Global Finance Software Engineering
Group supports the Global Finance (GF) sec-
tion of NationsBank. NationsBank is divided
into two sections. General Bank is the sec-
tion of the bank you and I use for our check-
ing and saving accounts or to get and pay a
car loan. General Bank is the largest part of
NationsBank.

Global Finance is the second section. As
large corporations, say $250,000,000 in sales,
have different needs from their bankers,
Global Finance has a distinctly different set
of services. These needs dictate different
performance requirements – and usually
much more exposure to the external cus-
tomer. Consequently, Global Finance has
chosen to use technology to leverage an
advantage in this arena.

My group, IS Tools, is part of the Global
Finance Software Engineering Group. We
evolved from the 1993 acquisition of Chicago
Research and Trading (CRT) by Nations-
Bank. Between 1993 and 1996 NationsBank
explored this new acquisition. In addition to
the “derivatives” (specialized combinations
of options, futures and indexes that can be
purchased and traded) knowledge the bank
had obtained, CRT had developed and
refined a method of high-tech rapid develop-
ment to support derivative trading. Nations-
Bank, realizing this was a potential competi-
tive advantage, asked the CRT group to help
implement their rapid application develop-
ment (RAD) process within Global Finance
as a whole.

To facilitate this, the head of IT from CRT
asked to join NationsBank Services, Inc., to
support Global Finance as the head of soft-
ware engineering. As no group within the
Services company dealt with development
tools at that time, we, the IS Tools Group,
also moved to support Global Finance. The
manager of IS Tools then became the head of
a team named Technical Architecture and a
manager of IS Tools in Chicago was selected
from the Tools group.

We then created a tool group, with a local
manager of IS tools, for each of our other
main development areas, Charlotte, North
Carolina, and Dallas. This provides a more
locally accessible point of contact for the
developers in each region. The three man-
agers report to the Technical Architecture
Team Lead, who in turn reports to the head
of software engineering. Each local manager
supplies support, specialized expertise and,
indirectly, training for each of the supported
tools, and vendor contact and contract sup-
port coordination.

Evolution of the IT Architecture
This arrangement shows our appreciation

of the significance of architecture, and the
infrastructure to deploy it, within the Global
Finance section of the bank. It also under-
scores the importance of the use of technol-
ogy in lowering our costs and increasing our
efficiency to our customers, the developers
who support the decision makers within
Global Finance.

Now that you know our position within
the bank, and how we evolved here, let’s dis-

NationsBank’s 100%
Pure Java Solution

NationsBank
develops a Java
solution, using
JBuilder from
Inprise and a

variety of other
Java tools

A bank’s
journey

from legacy
systems
to Java

About the Author
John Melka has over 25 years’ experience in design
and development engineering in multiple disciplines.
He currently works for NationsBank Services, Inc. He
can be reached at johnm@crt.com.

by John Melka

johnm@crt.com

J
B

U
IL

D
E

R
 F

O
C

U
S

• VOLUME: 3 ISSUE: 11 1998Java DEVELOPER’S Journal32

33VOLUME: 3 ISSUE: 11 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

cuss the evolution of our architecture, and
what tools and technologies we’ve used to
accomplish this evolution.

Over the years we’ve watched our archi-
tecture change from the monolithic to tradi-
tional client/server. When we lost power
with traditional client/server, we moved to
light client/server. Light client/server has
progressed to the three-tier architecture (a
heavily misused term). And we’re finally
moving to the fully distributed n-tier.

The monolithic is often forgotten in our
evolution discussions. It formed the basis
for all our batch programming and exists
(mostly as “legacy” code) for many purpos-
es even today. It still fills many purposes for
which it is well suited (most of us are paid by
such a program). As this technology proved
itself to be brittle and hard to maintain, it
served to launch us into the next phase – tra-
ditional client/server.

In traditional client/server each delivered
function has its own client and its own serv-
er. If the organization is really astute, there is
a set of standards that defines the user’s
interaction with the client, i.e., menu struc-
ture, what mouse clicks do, drag and drop,
and so on. Hopefully this group also fol-
lowed the standard that the OS developers
used. (This assumes that the OS that clients
were developed for HAD a standard at the
time the clients were developed.) The sec-
ond best is that the interfaces are REALLY
different. If they’re actually only close, you
usually want to retrofit your clients with the
OS vendor’s system, no matter the expense.

An Outgrowth from Traditional
Client/Server

We began to outgrow the traditional
client/server when the phenomenon I call
“desktop implosion” occurred. When you
begin to get more and more functionality on
the desktop, the number and interaction of
clients begins to balloon. As the ballooning
proceeds, the density of programs eventual-
ly reaches critical mass and the desktop
becomes a black hole, sucking the entire
content of the office (and the hapless user)
into it. (Actually, the number of programs
and interactions destabilizes the desk and
becomes a nightmare to update, but the
black hole metaphor is much more graphic.)

Client/server does, however, have some
advantages. We can tune all of our server
applications for maximum performance. We
can set up special auditing, tracking and
accounting information within each of the
servers. Against that we have a number of
disadvantages.

Disadvantages of Client/Server
The first disadvantage is the deployment

problem. When the crews paint the Golden
Gate Bridge, they start on one end and paint

toward the other. When they reach the other
end, the beginning is peeling so they start all
over again. This continues ad infinitum. If
you imagine that they change color each
time they run out of paint, we have an analog
to our deployment problem. At no time will
they have a stable color for their bridge, just
as we won’t have a stable configuration on
our workstation or servers when we reach
the critical number of applications.

Second, we have little reuse of software
except within libraries. These are generally
developed for one application and then
“upgraded” for future inclusion. While this
reuse is minimal, the practice is on the right
path. It’s usually less effective as the number
of platforms increases.

A Need for an N-Tier Approach
Our first attempt to alleviate the tradi-

tional client/server problems is to convert
to the light client/server. We move the client
code to the server and combine it with the
server code. We use a “general client” with a
“glue” language to keep the user interface on
the workstation. Our general client is a
browser. The glue language is HTML. This
setup is what some people call “three-tier”
with the database forming the third tier. As
we’ll see, this usage has confused three-tier
with the simpler light client/server.

We have now alleviated the deployment
problem. We deploy to a server (or server
farm) that is significantly simpler than a
large number of desktops. This improves
our scalability problem. We can still collect
our audit and tracking data, but now we rely
on an authentication method to really ID the
user (either the CGI type authentication or
some “single sign-on” technique). We do
need an investment in the infrastructure
because we establish an intranet (using
either Web technology or our own) to create
the link. (We did some of this in traditional
client/server, but it increases with the uti-
lization increase of light client/server.)

Multiple Platforms Come into
the Picture

Our downside here is that we
may have to design for multiple plat-
forms and browsers. When we
reached this phase we had multiple versions
of multiple browsers on two different plat-
forms. Since placement is difficult without
the same resolution on each desktop, to say
nothing about different browsers, our test-
ing time increased dramatically. We alleviat-
ed this problem by specifying the kind and
version of browser on each desk.

We still have minimal reuse of this model.
In addition, as HTML is stateless and not
really designed for this purpose, we’ve used
JavaScript or VBScript for any user feed-
back. Not using these techniques results in

the “send it and find out how it breaks”
pages we’ve all come to hate. As this method
requires an HTML generator (or generation
logic), we have to learn these tools. This
results in a flatter productivity versus time
curve for the developers entering into this
design model.

While this technique is better than the
traditional, we still eventually run into a
complexity issue. The new model addresses
the deployment problem but does it at the
expense of the productivity curve. To allevi-
ate this problem we have to address the
reuse problem and find a way to blend a
number of our functions. The blend allows
us to add functionality by adding only the
changes necessary to create that new func-
tionality.

Implementation of a Three-Tier
Architecture

This blend becomes our three-tier archi-
tecture. The three tiers we refer to here are
the presentation, server of services and the
data layers. The presentation layer is our
interface with the user. It gets what informa-
tion the other layers need and returns the
results they send to us. The server of ser-
vices provides us standard services – secu-
rity, transaction integrity and the like
– and our own special services –
such as our business rules – to
provide us with a way to han-
dle our information. The data
layer provides us with our data
interfaces to data objects
(OODBMS), rela-
tional databases
and non tradition-
al data sources,
such as real-time
feeds or e-mail.

In this model
we find the

“Goldilocks” client,
usually a browser augmented
with one or more plug-ins, that’s not too
thin, not too thick, but just right. On the
server side we incorporate a method of
implementing the server of services so it can
be spread across a number of servers. This
gives us the scale we got in the light
client/server without having to replicate the
code across the multiple servers. We now
have a more encapsulated object model, so

J
B

U
ILD

E
R

 F
O

C
U

S

34 • VOLUME: 3 ISSUE: 11 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

we can reuse at the object
level.

Our downside is that we
have to provide more infrastructure to
implement the design. In addition, we’ve
altered our deployment model. While we
don’t deploy to multiple servers, we have to
make sure we deploy objects compatible
with existing objects and applications. This
makes interface design and maintenance
very important. Last, our design is still pre-
dominantly client/server.

A Move from Three Tier to N-Tier
Our latest move is to expand the three-

tier model to the n-tier model. In this model
we expand the ability to tier back to the
client. Both client and server use objects to
implement functionality. In our browser
example CORBA-enabled applets can serve
this function.

On the server side the middle tier strati-
fies into interface, business and data strate-
gies. Objects, both general and specific,
implement these strategies. At this point
component architecture comes into play
because the component provides the model
for reuse.

This is where we’re at with our architec-
ture. We have applications that embody all
of the steps along the way (with the excep-
tion of monolithic, I think). With our discus-
sion of who we are, you should have a good
idea of why our architecture developed the
way it did.

A New Set of Requirements
Performance: A whole set of require-

ments falls out of our architectural experi-
ences. First, you’ll need levels of perfor-
mance in both development and production.
The performance is necessary because, in
the rapidly moving environment we all work
in, asset RAD is necessary to ensure time to
market (even if the market is internal). If you
don’t believe this, see if you can remember
when development cycles were 18 months.

Internet: Departmental projects have
needs different from those of general Internet
applications. Internet applications require a
whole security infrastructure to ensure
enterprise integrity. Internet applications
have needs different from those of intranet
applications. Our internal customers are usu-
ally more demanding.

Extranet: Extranet applications have a
set of needs different from those of Internet
or intranet applications. In the extranet
arena you have to protect yourself from
external intrusion while ensuring that your
customers are the only people getting your
content.

You need to examine BOTH applets and
applications. Most people look only at
applets and forget that the browser-launched

application can pro-
vide better functionali-
ty than an amalgam of
applets and HTML. You
have to look at the design from
all aspects.

Platform Issues: Platforms can be
both a liability and an asset. Some platforms
lose scalability before others. You need to
design for flexibility so that redeployment
doesn’t involve a part of the software.

Software Configuration Management
(SCM) is essential for viability. You must be
able to reproduce your work despite
turnover, revision or disaster. This requires
both discipline and infrastructure invest-
ment, but it’s a vital link and shouldn’t be
scrimped on.

Frameworks: Frameworks are essential.
Without frameworks you can’t achieve the
uniformity necessary to reuse objects and
components in the environment. Frame-
works provide functionality that is neces-
sary but not core to your business. You can
purchase a number of these frameworks and
save a lot of time and effort. Make sure you
get support with them.

Distribution: Distribution is essential.
You need a means of distributing your
objects and components. If you believe this
is an easy problem, remember how many
times your Windows 95 system has crashed
because some installation program has
decided to overlay a new DLL with an old
one.

Testing: Testing is different in this envi-
ronment. As your network is now part of
your environment, your testing must include
it. This means that you not only need to test

on every platform your application could
possibly be used on, you must also load-test
across the network. Measure all the loads
you expect the project to be used at. Then
continue the test to overload so you know
when to upscale the implementation.

A browser must be part of the configura-
tion. If you can, specify one type of browser
and restrict the number of plug-ins to a rea-
sonable number. This lowers the desktop
update requirements.

We want to open standards to achieve
our goals. We define open standards as ones
in which the specifications are published by
the promulgator and at least two vendors
supply product. While you usually cannot
adhere 100% to open standards, you need to
control when you deviate and what you lose
by that deviation.

Java as the Solution
We chose Java to provide our cross-plat-

form capabilities. We have experience with
C++ in multiple environments and know
how expensive it is to maintain. If Java low-
ers this cost, it is a significant saving. In
addition, we have the option of creating
applets with Java.

CORBA supplies the middleware. CORBA
is platform- and language-agnostic. This
allows us to decide how and what is used to
implement our applications. In addition, the

J
B

U
IL

D
E

R
 F

O
C

U
S

100% Pure Java Code
No proprietary code

or markers

35VOLUME: 3 ISSUE: 11 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

interface description language (IDL) pro-
vides an ideal, compileable medium for
interface specification. The CORBA compo-
nent, transaction and security models pro-
vide the essential services necessary to
build our applications.

C++ provides the high-performance
parts. Most of us have a large body of cus-
tom C++ code that we have no desire or,
sometimes, ability to replace. JAVA is not a
high-performance mathematical language –
yet. Because of our choice of CORBA, we can
be agnostic about which language compo-
nents are constructed from.

JBuilder as the Java IDE
For our Java IDE, we chose JBuilder from

Inprise. We are already a Delphi house and
knew how to use the environment. Since we
had a strong NeXTStep background, we
wanted a strong component development
environment. We had already seen this in
the Delphi environment. With JBuilder’s
implementation of JavaBeans as their com-
ponent model, we felt confident in our
choice. Our experience with switching from
code to graphics and back, seamlessly and
without encumbering comment tags, has
enhanced the speed and reliability of code
development. 100% Pure Java generation
means that I have to generate the code once
and simply test it on each of the possible

deployment platforms. This is a significant
saving of labor versus either C++ or design-
ers that use custom heavyweight compo-
nents.

VisiBroker for CORBA Implementation
VisiBroker provides the CORBA imple-

mentation. It has excellent Java and C++
implementations. It is well integrated with
JBuilder and thus is easier for developers to
use (they don’t have to leave their environ-
ment to use the tool).

PVCS, NetDynamics and Mercury
Interactive as Additional Tools

PVCS provides our SCM. It is integrated
with JBuilder and also works with our serv-
er-side Java framework, NetDynamics. It was
already a standard within the bank. This
made deployment and support infrastruc-
ture consistent with our other development
environments. It also supports both ASCII
and non-ASCII code parts.

NetDynamics provides the server-side
Web development framework. As HTML is
the glue layer in our presentation layer, we
need a robust server-side generation engine.
We extensively examine the framework mar-
ket on a regular basis. In our environment
NetDynamics consistently exceeds the oth-
ers as a production system. The incorpora-
tion of VisiBroker CORBA as their ORB

makes for a wide CORBA pipe from our
application presentation layer to the back
end.

Rounding out our development environ-
ment are our Mercury Interactive test tools.
These tools were chosen because the test
scripts written at any point in the test pro-
cedure can be utilized at other steps. Thus
the unit tests can be used as part of the inte-
gration test, and so on. In addition, their
load-testing tool can be used to properly test
NetDynamics.

What we see as needed future directions
encompass test tools, remote debugging, a
more general component model, applica-
tion-specific and general servers, and more
commercially available components. The
test tools should give better insight into the
applications function at the JVM level as well
as provide code coverage and performance
analysis. Remote debugging should be capa-
ble of debugging code anywhere on the net-
work. Servers should provide support for
the Enterprise JavaBeans and CORBA com-
ponent models. Components should evolve
from the basic “list, queue and dequeue”
models.

I hope our experiences at NationsBank
provide some insight into how and why our
architecture has evolved and what tools
we’ve chosen to implement this architec-
ture.

J
B

U
ILD

E
R

 F
O

C
U

S

36 • VOLUME: 3 ISSUE: 11 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

One of the most frustrating and expen-
sive aspects of transitioning to any new soft-
ware product or version upgrade is the
impact to productivity while tackling the
learning curve. The downtime associated
with learning new tools and techniques can
be a significant barrier to technology adop-
tion, and many firms will lag with the status
quo to avoid the potentially cumbersome
implementation of new products. The prod-
uct team at Inprise took this factor into
account when planning the launch of
JBuilder 2, and adopted an integrated learn-
ing system from Hawaii-based Referentia
Systems Incoporated, to provide a rapid
ramp-up for the new release.

Taking full advantage of JBuilder 2’s
open API and architecture, Referentia
adapted the Referentia Learning System to
provide an integrated, extensible multime-
dia training resource that JBuilder users
can access 24 hours a day. At its core the
system is a software framework designed to
integrate with software applications and

deliver multimedia instructional material.
This new learning platform offers rich con-
cept and lesson animations, a keyword
topic search for performance support on
the job and an advanced “Try It” feature,
letting users load-sample files directly into
JBuilder and practice the lessons along
with step-by-step narrated instruction. The
integration with JBuilder 2 includes links to
JBuilder Help documentation, accessibility

through JBuilder’s Help menu and hooks to
call JBuilder to the foreground in the “Try
It” mode. With content focused on project
examples and on-the-job productivity tips,
the system is designed to bridge the gap
between online reference and full-fledged
training.

The idea isn’t new -- in fact, for many
years visionaries in the fields of computer-
based training and electronic performance
support system design have suggested
built-in training for software products as
the obvious ideal in a multimedia-capable
world. Only in the last couple of years, how-
ever, has the installed base of multimedia-
capable workstations grown to levels that
can provide a firm market for rich audiovi-
sual training aides.

Referentia Systems has been at the fore-
front of the integrated multimedia training
field, supplying Autodesk with an in-the-box
integrated training system for AutoCAD
Release 14 in May 1997. The product, first of
its kind, won awards in both the CAD industry
and in tech pubs/documentation circles.

The newest version of the Referentia
Learning System adds the ability for multiple
volumes of training content to be introduced
into a single outline tree. Referentia for
JBuilder 2 leverages this capability by cate-
gorizing the available content into separate
CD-ROM volumes, thus giving users the
opportunity to choose from a library of con-
tent titles geared to discipline-specific needs.

MULTIMEDIA JAVA TRAINING

Referentia for JBuilder
Integrated Multimedia Training

for JBuilder Professionals
by Larry Lieberman

J
B

U
IL

D
E

R
 F

O
C

U
S

Figure 1: Tutorials, Fast Answers and Concepts are the three main sections of the Referentia System.

Figure 2: Watch and listen to step-by-step lesson animations, then try it in JBuilder.

http://www.JavaDevelopersJournal.com38 Java DEVELOPER’S Journal • VOLUME: 3 ISSUE: 11 1998

Volume I: Getting Productive
Volume I provided with JBuilder 2 con-

tains a starter set of content including tours
of the JBuilder 2 IDE and quick-start lessons
for building JavaBeans, setting breakpoints
in the debugger, creating a UI for a simple
database application and other helpful
information.

Volume II: Building Applications
This is a full-sized Java database applica-

tion development course containing roughly
a week’s amount of instructor-led training
content on a single CD-ROM. More than 45 in-
depth lessons and concept animations are
designed to help users increase productivity
in developing real-world Java database appli-
cations. In this series of interactive tutorials,
users gain a strong understanding of the
JBuilder data model, master a solid founda-
tion of essential and advanced database tech-
niques and learn how to complete their data-
base application development with advanced
user interfaces and various deployment
strategies. Specific topics include terminolo-

gy, relational databases, JDBC, DataExpress,
DataStores, master detail forms, queryRe-
solvers, queryProviders, layout managers,
JFC/SwingSet, Web deployment and other key
topics.

Volume III: CORBA Essentials
Volume III will cover the basics of distrib-

uted computing in JBuilder 2, including
deployment server and enterprise beans. It’s
scheduled for release in early 1999.

Once installed, Referentia for JBuilder 2
is accessible from the desktop or through
JBuilder 2’s Help Menu. The system can be
run as a stand-alone training tool on a mul-
timedia-capable PC or integrated with
JBuilder to provide performance support
on the job. The system’s browser-style
interface offers three functional areas of
navigation: Tutorials, Fast Answers and
Concepts.

The Tutorials section contains lesson
animations grouped into a sequential tree
outline. Opening any of the lessons reveals
an HTML text window displaying the lesson

steps, with hot links to JBuilder 2’s online
documentation for more comprehensive
reference on specific topics or links to Con-
cept animations for general reference.
Selecting “Play Animation” starts an AVI
sequence that brings the lesson steps to life
in a smooth screen recording with accom-
panying step-by-step narration.

In the Concepts section users can
choose from a glossary of terminology illus-
trated by rich 3D visualizations. The Con-
cept animations offer strong reinforcement
of complex subject matter (e.g., data mod-
ules, JDBC, Swing architecture) to allow
users to grasp the big picture before they
attempt the details of a lesson. Fast
Answers is where users can look up infor-
mation quickly through a keyword index or
by category. Searches pull up information
from all available sources Including rele-
vant Tutorial lessons, Concept animations
and JBuilder Help files.

The integration with JBuilder is key to
Referentia’s functionality. Although the sys-
tem can be run as a stand-alone training

Figure 3: The Try It feature leaves an instructional window on top of JBuilder.

J
B

U
IL

D
E

R
 F

O
C

U
S

39VOLUME: 3 ISSUE: 11 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

aid, its optimal use is clear when running
simultaneously with JBuilder 2. From any
lesson, users can access a “Try It” feature
that brings JBuilder to the foreground and
leaves a floating instructional window on
top with the lesson’s step-by-step text. An
“Open Sample File” button automatically
loads project files into JBuilder for practice
in real time. Once the files are loaded into
JBuilder, users can follow along with the
text or elect to play the audio track and lis-
ten to the narrated lesson steps while per-
forming the operations live in JBuilder.

It was this live “Try It” feature that
attracted technology scouts from the Ohio
DOT to the project. Senior programmer
Angelo Serra heard about the project
through consultants working with Inprise.
After testing the Referentia system in its
beta release, Serra knew the product would
mean less downtime for their team as they
transitioned to Java and JBuilder.

“At the Ohio DOT we’re including Refer-
entia for JBuilder in our training program
because our developers prefer the audiovi-
sual approach of the multimedia CD,” Serra
said. “It will significantly increase our pro-
ductivity.”

Senior computer scientist Vic Askman
at GTE Internetworking echoed these
sentiments after incorporating JBuilder 2
and reviewing the accompanying Refer-
entia Learning System. “The capability of
the Try It feature is extremely useful, and
the animations are well paced -- not too
fast or slow,” Askman said. “Content was
relevant to Java as well as JBuilder 2, and
it should have a positive impact on the
bottom line since it will help ease the
transition to JBuilder 2.”

This new way of learning will help speed
the development and deployment of Java
applications for new and experienced users
alike. Content is written to an intermediate
level, assuming basic knowledge of pro-
gramming in a RAD environment. Program-
mers migrating from other development
languages will find that JBuilder’s inclusion
of an integrated multimedia training system
allows for a rapid ramp-up on Java devel-
opment within the JBuilder 2 IDE. Those
with intermediate to advanced Java pro-
gramming expertise will find the system
useful for getting familiar fast with the new
features of JBuilder 2. Future volumes of
content will address specific JBuilder train-
ing needs from novice to advanced topics.

Referentia has supplied learning sys-
tems for AutoCAD Release 14, AutoCAD LT
’97, Autodesk’s Architectural Desktop and
Seagate Software’s Crystal Reports 6.0. Par-
ties interested in evaluating the Referentia
Learning System can request a free copy of
the Referentia for JBuilder Volume I CD
(shipping and handling fees will apply) and
get more information about additional vol-
umes online from Referentia Systems Inco-
porated, at www.referentia.com/jbuilder or
by calling 1 800 569-6255.

About the Author
Larry Lieberman heads up corporate
communications at Referentia Systems Incoporated
His recent speaking engagements include technolo-
gy presentations to the U.S. Navy and a confer-
ence address on the emergence, utility and impact
of multimedia training materials. He can be
reached at larryl@referentia.com.

larryl@referentia.com

Figure 4: Concept animations bring complex terms and techniques to life.

40 • VOLUME: 3 ISSUE: 11 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

The company has just landed
its most important account
to date: a big client has
signed a contract for the
development of a Java
program. It’s an extensive

application, requiring data-
base connectivity and the use

of ActiveX controls. You’ve been chosen to
head up the project, which will require a team
of developers. It’s now time to choose an IDE
that combines ease of use, powerful develop-
ment tools and a team-oriented interface. With
the increasing number of IDEs on the market,
it could be difficult to choose one that fits this
scenario.

I’ve just used PARTS for Java from
ObjectShare. I found it to be smooth, pow-
erful and full of necessary features.

System Requirements
• Intel 486 or higher processor
• CD ROM drive
• 260 MB free disk space (FAT 16)
• 90 MB free disk space (FAT 32)
• 24 MB RAM (32 MB recommended)
• SVGA graphics card
• Win95, NT 4.0 or higher
• TCP/IP installed and configured
• JDK 1.1-capable browser

Any earlier version of PARTS for Java
must be completely removed before the cur-
rent version can be installed. The CD-ROM
has the AUTORUN feature and the Installa-
tion Wizard has a checklist of a few optional
features. These can be installed later if you
choose not to include them during the initial
setup. The sections that must be installed
are:
• Parts Pro Program and Documentation

Files
• Swing Version 1.01
• JDK Version 1.1.5 (if not already installed)

I installed on a Cyrix 133 with 32 MB of

RAM. Installation went smoothly and took
only a couple of minutes. The application
ran very well and didn’t hang up the
machine, as some IDEs occasionally do.

PARTS for Java opens with a Project
Manager window, as seen in Figure 1, that
acts as the “command center” for the IDE.
It’s the main window where all the elements
of a project are organized. Along the top is a
toolbar to launch all PARTS for Java tools.

I thought the Project Manager was nicely
laid out, avoiding the confusing multiple-win-
dow fiascoes given by some IDEs. The tool-
bar enables the user to quickly and easily:
• Launch any applet or application.
• Compile whole projects or selected

sections.
• Manage versions of projects and files.
• View the nested parts hierarchy in a JEDT

file.
• Browse through any .jar or .zip file.
• Edit default path settings and/or descrip-

tive comments for any project.
• Launch the other tools and wizards.
• Generate documentation by running

JDK’s javadoc program.
• Print information pertaining to the project.

The window is divided into two panes.
The left pane shows the hierarchical view
of a project and subprojects. In the right
pane is a report view of the project files
currently selected in the left pane. When a
project is opened or created, it’s added to
the left pane. New projects can be created
as independent projects or subprojects of
existing ones. Projects can be placed
under version control. Different versions
of a project are stored in a repository and
can be retrieved or deleted at any time. A

PRODUCT REVIEW

PARTS for Java
Professional Edition

by ObjectShare
A great choice for a team-oriented development tool

by Ed Zebrowski

Figure 1: PARTS for Java opens with a Project Manager window,
making it easy to organize and oversee any project.

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
PARTS for Java -
Professional Edition
ObjectShare
16811 Hale Ave., Suite A
Irvine, CA 92606
Phone: 949 833-1122 Fax: 949 833-0209
Web: www.objectshare.com
E-mail: info@objectshare.com
Price: $1,495 download (includes OracleLite,
OrbixWeb,Install Anywhere Now!) Standard $749,
Lite $149

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

41VOLUME: 3 ISSUE: 11 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

project may be “unversioned” as well.
It’s also possible to change the configura-

tion of PARTS for Java from the Project Man-
ager window by selecting Tools-Settings Edi-
tor; a two-tab dialog box is displayed. On the
System page it’s possible to:
• Change the User Name settings.
• Change the Java Compiler, the Java Inter-

preter or the Applet Viewer.
• Alter the Java invoker port number. This

helps avoid conflicts with other tools.
• Invoke the Show DOS Prompt During

Launch option, which displays DOS win-
dows containing status information
about an application or tool.

• Check the Conserve Memory option; use-
ful in systems with less than 32 MB of
RAM, this option will increase the fre-
quency of “garbage collection” opera-
tions.

When the Visual Designer page tab is
clicked, the following options may be
selected:
• Show Hints, Show Labels with Links,

Show Links with Selection and Orthogo-
nal Link Creation.

• Change the Grid settings so component
parts may be easily aligned.

• Change Link Colors.
• Change Background Colors.
• Change Mouse Settings.

After installation and configuration,
PARTS for Java is ready to create new appli-
cations. Selecting File-New Project will
launch a dialog box. Filling in the appropri-
ate information and clicking OK will add the
new project to the Project Manager window.

The Visual Designer: A Complete
and Powerful Tool That Has
Drop-and-Drag Ease

Selection of a file in the Project Manager
window enables you to initiate the Visual
Designer. This is an object-oriented devel-
opment tool that allows quick construction
of applications by dropping and dragging
prefabricated parts. These parts are dis-
played in a catalog window and include:
• A catalog of AWT parts
• A Swing catalog
• An ActiveX catalog
• A JDBC catalog

By using the Visual Designer I construct-
ed a user interface for an application in only
a few minutes.

The Class Master: When You Need
More Complex Operations

The Visual Designer was excellent for
rapid-fire development of a basic Java appli-
cation. Some clients are going to have spe-
cial needs, however, which may entail high-
ly specialized operations that won’t be
found in the Visual Designer menu. When
such an occasion arises, PARTS for Java has
just the solution: the Class Master (see Fig-
ure 2). The Class Master opens as a four-
pane window:
• The Packages pane in the top left is a tree

view that shows the hierarchy of pack-
ages on the selected class path.

• The Classes pane in the top center is a
tree view of the classes or an alphabetical
list of .java source files.

• The Methods pane in the top right shows
methods and variables when a compiled

class file is selected in the Classes pane.
• At the bottom is the Source pane, which

features a source code editor that allows
the examination, editing and compilation
of Java source files.

In addition to the Class Master there’s a
wide selection of other powerful tools.
Among them are:
• A CORBA Wizard
• An RMI Wizard
• A Breakpoint tool
• A Debugging tool

As you can see, in addition to its ease of
use, PARTS for Java is a powerful and pro-
fessional development tool. If you’re looking
for the perfect tool for that big project,
PARTS for Java is well worth the price.

About the Author
Edward Zebrowski is a technical writer based in the
Orlando, Florida, area. Ed runs his own Web devel-
opment company, ZebraWeb, and can be reached
on the net at zebra@rock-n-roll.com.Figure 2: The Class Master allows the building of more specialized or complicated applications.

zebra@rock-n-roll.com

SYS-CON
PUBLICATIONS

Tune in for
detailed discussion of

products from JDJ advertisers!
Java readers voted #1 with their browsers!

2 million banners delivered each month
(more than all other Java media added together!)

SYS-CON
RADIO

43VOLUME: 3 ISSUE: 11 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

The key selling feature of Java is its
WORA (write once, run anywhere) promise.
Let’s pause and think about what’s involved
in making this promise a reality. “Write
Once” is a concept that applies specifically
to the Java language, the idea being that
there is one and only one standard defini-
tion of the programming language that
developers use for writing application
code. In terms of syntax and semantics, this
means the definition of the language is
fixed, and any changes are routed through
Sun Microsystems, the official owners of
the Java Platform.

Providing a standard definition for
Java’s syntax and semantics is a feasible
proposition. The “Run Anywhere” part of
WORA is a much harder goal to achieve.
“Anywhere” refers to the combination of
hardware platforms and operating systems
on which software written in the language
can run. This mandates platform neutrality.
All code written in a software programming
language is compiled down to machine
(assembler) code that is specific to a par-
ticular hardware platform; that is, the resul-
tant machine instructions run on a particu-
lar CPU. Thus, to have the code run any-
where, the same source should compile to
different machine instructions.

The Compilation Process
One way of translating programming

language source code into native platform
code is to provide the compiler with flags
or directives that cause it to compile to a
specific instruction set. However, this
necessitates that the programmer or
installer of the code provide the directives,
depending on the hardware environment.
Customizing source code from a high-level
language for multiple platforms is not an
easy task. Also, the precompiler directives
have to be embedded in the source code,
which adds to the code’s complexity. At
some point the precompiler directives
may actually be viewed as a part of the lan-
guage itself. The result is that several
incarnations of the language coexist and
platform neutrality becomes impossible.
Porting the code becomes a nightmare.

The other approach involves breaking
down the process of compilation in two
stages. First, an abstract “platform” that the
programming language compiles to is
defined. This is not an actual platform, but
rather an instruction set definition for a “vir-
tual machine” (VM). The code written in the
programming language always compiles to
this VM, regardless of the actual hardware
platform. The next stage of this approach is to
translate the machine instructions of the VM
to native hardware-specific assembler code.
Figure 1 illustrates these two approaches for
source code compilation.

This probably sounds like six of one and
half a dozen of the other. And it is. The end
result is the same – programming language
code is translated (compiled) down to
native machine code. The difference, how-
ever, is that the responsibility of configur-
ing the compilation process is abstracted
away from the programmer. Programmers
write source code that always compiles to
the same virtual machine. The virtual
machine code is interpreted by a runtime
VM that translates each virtual instruction
into native code. The programming cycle
becomes less complex, source code written
and compiled on any platform runs on any
other and the world is a happy place.

The Java Virtual Machine
The Java Virtual Machine (JVM) is an

abstract machine that provides a specifica-
tion for running compiled Java code. The
specification allows flexibility in implement-
ing the features of the VM. All JVM imple-
mentations need to support the execution
of Java bytecodes, which are the virtual
machine instructions that Java source code
compiles to. However, the specification

does not dictate how the bytecodes have to
be executed. This functionality is provided
by the vendor who provides the runtime
environment. The VM may be implemented
completely in software or, to varying
degrees, in hardware. This flexibility allows
the JVM to be implemented on a variety of
computers and hardware devices.

The Java programming environment
thus may be categorized into two comput-
ing environments. The compile-time envi-
ronment provides the translation of Java
source code to bytecodes (.class files). The
runtime environment provides the interpre-
tation of the bytecodes into native platform
code. Figure 2 illustrates the role of the JVM.

The specifications of the JVM are offi-
cially released by Sun Microsystems. This
means that the definition of the virtual
machine instruction set is standardized by
a single source. The specifications of the
Java APIs are also officially released by Sun
Microsystems. The JVM and the Java APIs
constitute the Java Platform, or the Java
runtime system.

As far as Java Virtual Machines go, we’re
not just in Cupertino anymore. While it’s
true that the official Java language defini-
tion is still provided by Sun Microsystems,
alternate definitions of the JVM are creep-
ing into the computing arena. Of these, the
ones that have attracted the most attention
are the Microsoft Virtual Machine for Java
and the HP-Embedded Virtual Machine for
Java. Both diverge from Sun’s specifications
for a Java Virtual Machine. Another JVM of
interest for our discussion here is the long-
awaited Sun Microsystems’ HotSpot JVM.

This month the Cosmic Cup briefly
examines the three JVMs mentioned above.
While the first two “stray” from the specifi-
cation, HotSpot adheres to it (after all, it is
being developed by Sun), and illustrates a
novel implementation of the JVM specifica-

Java Virtual Machines

COSMIC CUP

by Ajit Sagar

A discussion of three JVMs

Java Virtual Machine Description
HotSpot JVM Sun’s next-generation virtual machine implementation that

enhances Java’s runtime performance
Microsoft VM for Java An independently developed implementation targeted for

Microsoft Windows platforms
HP-Embedded Virtual An independently developed implementation targeted for
Machine for Java embedded devices running real-time operating systems

Table 1

44 • VOLUME: 3 ISSUE: 11 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

tion. These JVMs are shown in Table 1.
They are discussed in the next section.

HotSpot Java Virtual Machine
The HotSpot JVM, an implementation of

the standard Java Virtual Machine, is expect-
ed to provide significantly higher perfor-
mance than other JVM implementations. It
uses a variety of techniques to gain perfor-
mance, including on-the-fly adaptive opti-
mization technology, fast thread synchro-
nization, a highly efficient garbage collector
and an optimizing native code compiler. The
key feature that makes HotSpot a novel
implementation of the JVM specification is
its use of modern dynamic compilation tech-
niques to generate highly optimized code on
the fly for specific execution environments.
At the heart of the HotSpot JVM is the Java
HotSpot Compiler. Unlike other compilers
that compile the entire program before exe-
cution, the Java HotSpot VM runs the pro-
gram immediately, using an interpreter, and

analyzes it as it runs to detect the critical
“hot spots” in the program.

The initial version of the Java HotSpot vir-
tual machine has been designed to the JDK
release version 1.2 specification, and is expect-
ed to be released at the same time as JDK 1.2.

Microsoft VM for Java
The Microsoft VM for Java provides a

complete implementation of Sun’s JVM
specification. However, it provides exten-
sions to the specifications that target Win-
dows platforms. The VM extends the stan-
dard JVM to provide the capability to load
component object model (COM) classes
and expose COM interfaces of Java classes.
This means that the Microsoft VM allows
Java classes to exist as both standard Java
classes and ActiveX controls. The
Microsoft VM itself is implemented as an
ActiveX control.

This extension of the standard VM
negates Java’s platform independence.

Once applications are developed
using the extensions, they become
specific to Windows platforms and
won’t run in other environments.
Microsoft’s VM is provided with
Internet Explorer, Java SDK and
Visual J++, Microsoft’s IDE for
Java.

In addition to the extensions to
the VM, the Visual J++ environ-
ment also provides an extension
feature to the Java programming
language – a new keyword, dele-
gates, and a supporting keyword,
multicast. Since our discussion
here is focused on JVMs, I won’t
go into a discussion on the con-
struct itself. What it signifies in
our context is that this small addi-
tion to the language means that
the code using these keywords
will also be compiled down to the

JVM implementation. In other words,
Microsoft VM will have to provide the code
for compiling the keywords in addition to
the standard Java language construct.

HP-Embedded Virtual Machine
for Java

The Hewlett-Packard-Embedded Virtual
Machine for Java includes a core set of Java
API implementations for java.lang, java.net,
java.util and java.io APIs. It specifically tar-
gets the embedded device market. It is
portable to MIPS-4300, Motorola 68 K, Intel
80x86 and sARM processor-based devices.

This VM is not an implementation of a
JVM specification provided by Sun Microsys-
tems, but an implementation of a completely
different VM specification defined by
Hewlett-Packard. The specification for HP’s
VM was announced prior to Sun’s Embedded
Java specification (which is its counterpart).
HP’s Embedded Virtual Machine for Java
provides incremental garbage collection
and optional Java class libraries (i.e., all the
libraries need not be linked at runtime),
and has a very small footprint (approxi-
mately 0.5 KB). It is supported on HP-
UX/PA-RISC and Windows NT/Intel develop-
ment platforms.

The HP-Embedded Virtual Machine for
Java is currently available as release 1.0.

Cosmic Reflections
In an ideal Java universe the definition of

the computing environment would come
from one source, all businesses would
agree to specifications and standards pro-
posed by one representative vendor, soft-
ware releases for the JDKs would be on
time and robust and there would be only
one development and deployment plat-
form. None of these fantasies come true in
the real world, however. Different aspects
of the computing environment are
addressed by different vendors. Optimizing
performance requires platform dependence
by its very definition. And no one source
can satisfy the needs of the entire industry.
Since the problems that Java is targeting
address the entire business community, it’s
unrealistic to expect the Java Platform to
be generic and at the same time address
every facet of the industry. As Java
matures, we should expect to see other
independent implementations of its VM.

About the Author
Ajit Sagar is on the technical staff at i2 Technologies,
Dallas, Texas, and a Java-certified programmer with
eight years of programming experience. He holds a
BS in electrical engineering from BITS Pilani, India,
and an MS in computer science from Mississippi
State. He can be reached at Ajit_Sagar@i2.com.

Ajit_Sagar@i2.com

Source
program

Native Compiler

Direct Compilation

Executable
Code

Source
program

VM Compiler

VM Code

Native VM
Interpreter

Executable
Code

Virtual Machine Compilation

Source Code

Compilation

VM

Compiler
Directives

Figure 1: Direct compilation versus VM compilation

Source
program

Source
program

Java Compiler

Java Virtual
Machine

Executable Code

Compile-time
environment

Runtime
environment

Figure 2: The role of the Java Virtual Machine

46 • VOLUME: 3 ISSUE: 11 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

If a picture is worth a thousand words,
what words do you use when the picture is
in the wrong format? Not exactly a Zen
koan, but a valid question whose answer is
JIMI, the Java Image Management Interface
from Activated Intelligence.

JIMI is a toolkit for reading, writing,
viewing and manipulating images in multi-
ple-graphics file formats. JIMI supports an
impressive number of image formats, but if
your target format is not supported, JIMI’s
open design allows you to add your format
while taking advantage of key JIMI features.
As you’d hope and expect, JIMI is platform-
neutral 100% Pure Java that works with
Java l.0.x and 1.1.x, and with the current
beta versions of Java 1.2.

This article will let you know if JIMI has
the features that will lighten your load and
tighten your code. The “Overview” section
examines JIMI’s major features and identifies
how JIMI can fit into your project. The “Down
to Business” section focuses on technical top-
ics and code samples.

Overview
When you finish this overview, you’ll

understand JIMI’s key features and be able
to identify how JIMI can provide a strategic
advantage to your projects and products.

JIMI Encodes and Decodes Images
Life gets pretty frustrating when you run

into communication barriers. The unruly
universe of the World Wide Web, with its
varied platforms, browsers, languages and
users, can make a programmer cry out for
simplicity. Java simplifies programming
across varied platforms and environments.
JIMI delivers stunning simplicity to the Java
programmer who needs to work with the
following formats:
GIF
JPEG
Portable Network Graphics Format (PNG)
Adobe Photoshop (PSD)
Targa (TGA)
Windows Bitmap (BMP)
OS/2 Bitmap (BMP)
ICO and CUR

Macintosh PICT (PCT)
Tag Image File Format (TIFF)
X Bitmap (XBM)
X Pixmap (XPM)
Sun Rasterfile (RAS)
PCX

The following code snippet reads a Pho-
toshop file and writes it back to disk as a
PNG file. It couldn’t be easier!

Image image = Jimi.getImage("myImage.PSD");
Jimi.putImage(image, "myImage.PNG");

See Listing 1 for a complete and equally
simple application version of this code.

Activated Intelligence’s customers are
using JIMI’s simple encode/decode features
to add serious power to their applications.
Put JIMI in your applets and applications to
easily browse and view most of the images
that come your way. Place JIMI in your File
Upload Servlet and rest assured that it’ll
accept a wide range of image files for con-
version to popular viewing formats. Expect
the number of supported formats to grow
with each release.

Image Manipulation with JIMI
You should now be confident that you

can read, write and view most image for-
mats. JIMI helps you manipulate these
images simply and uniformly. Going far
beyond the AWT, JIMI gives you power over
your images with pixel-level access. With
this feature you can write new and standard
image manipulation routines. Activated
packed JIMI with a few favorites, such as:
Scaling (does thumbnails)
Cropping
Color-reduction
Smoothing
Flipping
Edge detection
Embossing
Tiling
Oil painting
Blur
Gamma adjustment
Smoothing

If you choose to write a custom routine
using the JIMI pixel access interface, it’ll
work on all the supported formats.

What Makes JIMI Special?
If reading, writing, viewing and manipu-

lating multiple image formats across multi-
ple platforms isn’t enough for you, JIMI has
more. It’s the foundation for imaging within
the Java environment. What makes Activat-
ed so confident in JIMI? JIMI knows Java! JIMI
protects the Java programmer from some
vexing conditions in the Java environment.
JIMI is ready to work with the Java commu-
nity and harness its power. Following are
four of JIMI’s special attributes:
1. Big images, little JVM: How much memory

will your Java application have at run-
time? You may not know. JIMI has a fast,
powerful and unique virtual memory
management (VMM) system that lets you
do more in your little JVM than you ever
imagined. Using JIMI, a developer can
load a 10000x10000 image in a JVM that is
allocated only the standard 16 mb of
heap space. JIMI uses memory only for
the parts in use at that moment. How?
JIMI leverages its fine-grained control
over image access to implement a highly
efficient virtual memory system tailored
to the needs of large images. But the
developer doesn’t need to know the
details to use the VMM. JIMI simply has
the information you need buffered for
fast access.

2. Can I use JIMI on the server? Yes. JIMI
can work independently of the AWT.
Use JIMI in servlets, Enterprise Java-
Beans or any other AWT-less server-
based environment. When you have
lots of image translation or manipula-
tion to do, JIMI lets you move the pro-
cessing from the client to the server.

3. JIMI is extensible! Adding a new image for-
mat? No problem. JIMI’s capabilities are
dynamically extensible, allowing you to
add new image formats. Each new format
can seamlessly take advantage of all
JIMI’s core features.

Because we designed JIMI to be easily
and openly extended, Activated Intelli-
gence is on the lookout for new image
manipulation routines and image
encoders/decoders. Developers can con-
tact Activated Intelligence at www.activat-

A FIRST LOOK

by Luke Gorrie & Michael Sick

The Java Image
Management Interface

The tightly integrated components of JIMI provide a powerful
set of features in a modular and extensible architecture

47VOLUME: 3 ISSUE: 11 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

ed.com to make arrangements for review
and possible equitable use of their JIMI-
based code.

4. Flexible footprint: With Activated Intelli-
gence and independent developers
adding new features and formats to the
JIMI system, JIMI is growing! But what if
you want to use it where memory is a con-
straint or the code needs to be moved
over a slow network? JIMI is a modular
system that allows the formats and fea-
tures to “Plug and Play.”

Down to Business: Programming
with JIMI

Now that you know what JIMI can do for
you, the rest of this article will show you
how to become a JIMI developer. When you
finish reading, you should know how to pro-
gram with JIMI.

JIMI is made up of several tightly inte-
grated components that provide a powerful
set of features in a modular and extensible
architecture. Figure 1 illustrates JIMI’s
internals.

The JIMI core provides the central func-
tionality to support all other components.
These classes handle the transparent AWT
Image import/export, seamless VMM and
other advanced imaging features. With a
high-level understanding of the JIMI core,
the developer can concentrate on the pro-
ject.

The JIMI Image Read/Write Interface
The most fundamental use for JIMI is

loading and saving images. JIMI’s Image
Read/Write Interface includes an intuitive
front end with familiar and easy-to-use
methods for image load-and-save opera-
tions. See how the “Jimi” class provides
intuitive one-call methods for loading and
saving images:

public static Image getImage(String filename);

public static Image putImage(Image image,
String filename)

throws JimiException

Developers that have loaded images
using the core Java API will be familiar with
the getImage method. Jimi.getImage also
provides asynchronous image loading, but
with JIMI’s added full range of format sup-
port, on-demand VMM and animated image
support. Other convenient variations of
getImage are provided, including a similar
getImageProducer method used to apply fil-
ters or for use in an AWT-less environment.
With these variations there’s always a sin-
gle method you can use to load an image to
suit your needs.

Not surprisingly, the putImage methods
are equally easy. Give JIMI the image (or

ImageProducer), tell it where to save it and
JIMI does the rest. Again, putImage has all
the common variations to ensure that sav-
ing your image with JIMI is a one-call oper-
ation. Images saved will also automatically
inherit any properties they were loaded
with, such as compression scheme and
interlacing options, even if you’re saving to
a different format.

With these methods in your toolbox you
have everything you need to quickly add
basic load/save support for a diverse range
of formats to your programs. JIMI takes
things a step further by also enabling you
to dissect and reassemble image files con-
taining several frames of image data, such
as animated GIFs. This is achieved with two
new interfaces: JimiReader and JimiWriter.
For more on working with multi-image files,
see Listing 2.

See how easily JIMI’s features enhance
your programs? To get the JIMI advantage,
just change the one getImage line in your
code. Add one call to JIMI’s “putImage” and
the job is done.

The Image Manipulation Interface
Now you can easily load and save

images, but how about modifying them? For
this, JIMI has full compatibility with the
AWT’s ImageFilter model of image manipu-
lation as well as compatibility with new JDK
features like Java 2D. A common image-pro-
cessing operation is applying an Image-
Filter. With JIMI you can easily load an
image, apply a filter and then save the
image again. This code will crop a 100x100
region of an image and then save it:

ImageProducer
p1=Jimi.getImageProducer("i.gif");
ImageFilter f=new CropImage-
Filter(0,0,100,100);

ImageProducer p2=new FilteredImageSource(f,
p1);
Jimi.putImage(p2, "i.gif");

JIMI also provides more sophisticated
image manipulation tools. Without JIMI, a
developer who wants to access specific
pieces of image data needs to use a Pixel-
Grabber to get an image into an array of
pixel data and then create a MemoryImage-
Source to build the modified image. This is
expensive in both time and memory. JIMI
provides random access to pixel data in its
images. You have the power associated with
an in-memory buffer and the flexibility that
comes with all of JIMI’s interfaces. Access
your image in comfortable chunks and still
benefit from JIMI’s VMM capabilities.

Two additional key interfaces are Jimi-
RasterImage and JimiBufferedRasterImage.
The former provides a uniform interface to
images created by JIMI regardless of their
ColorModel type and form of primitive stor-
age, letting you access their pixel data as
RGB color values. The methods for this
access are:

public void getRectangleRGB(int x, int y,
int w, int h, int[] buffer,
int offset, int scansize)

public void getRowRGB(int y, int[] buffer,
int offset)

public int getPixelRGB(int x, int y)

JimiBufferedRasterImage extends this
set of methods to include symmetrical
“setters” for changing pixel data. The Jimi
class provides a one-call method for
accessing these objects. Just replace
“getImage” with “getRasterImage.” JIMI
also provides buffered access to these

Your Application

Extension Management AWT CompatibilityVMM

JIMI

JIMI Core

Image Read/Write Interface Image Manipulation Interface

Core FormatModules Encoder/Decoder Interface

Your Custom Format Modules

Figure 1

48 • VOLUME: 3 ISSUE: 11 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

images with “getBufferedRasterImage”
and the JimiBufferedRasterImage object.
For more detail see Listing 3.

The Encoder/Decoder Interface
Now you can load, view, save and manip-

ulate images for all JIMI’s image formats, but
what if your pet format isn’t supported?
Using JIMI’s extension API you can add a
new format module, leveraging all of JIMI’s
features and much of the work done for you.
Implementing an encoder or decoder with
JIMI gives you free image production, VMM
support and seamless integration with the
rest of JIMI.

Although greatly simplified, implement-
ing format modules still deserves a more
thorough guide than can be given in this
article. Interested developers should take a
look at www.activated.com/jimi/addformat/
for a step-by-step guide.

Conclusion
Now you know: JIMI’s simple elegance

lets you read, write, view and manipulate
most images across multiple platforms in
varied Java environments. You know when
and where JIMI can help bring your product
to release faster and with more features.
You also know enough to get started writing

powerful and effective imaging code using
the JIMI toolkit. So go ahead, visit us at
www.activated.com, download JIMI and
“get the picture.”

About the Author
Luke Gorrie is a Java programmer and the lead
developer of JIMI at Activated Intelligence. He can be
reached at luke@activated.com.

Michael Sick is a Java programmer, a Java advocate
and the director of strategic development for Activat-
ed Intelligence. Contact him at mike@activated.com

Basic image conversion with JIMI

import com.activated.jimi.*;
import java.awt.Image;

public class JimiIsReallyEasy {
public static void main(String[] args)
throws JimiException {
Image image = Jimi.getImage("myImage.PSD");
Jimi.putImage(image, "myImage.PNG");
System.exit(0);

}
}

Reading and writing multiple image files

import com.activated.jimi.*;

import java.awt.*;
import java.util.*;

/**
* A simple example program for reversing the
* order of frames in a multiframe image.
*/

public class ImageSeriesReverser
{
public static void main(String[] args)
{
// print usage if wrong arguments are given
if (args.length != 2) {
System.err.println("Requires args: <src> <dest>");
System.exit(1);

}

// vector to store loaded images in
Vector images = new Vector();

// read the images
try {
// create a JimiReader to read the image
// series from
JimiReader jr = Jimi.createJimiReader(args[0]);
// enumerate the images in the series
Enumeration e = jr.getImageEnumeration();
// insert them into the vector in reverse
while (e.hasMoreElements()) {
Image i = (Image)e.nextElement();
images.insertElementAt(e, 0);

}
}
// catch exception if the source file
// is malformed
catch (JimiException e) {

System.err.println("Error: " + e);
System.exit(1);

}
// write the images back in reverse
try {
// create a JimiWriter for the output file
JimiWriter jw = Jimi.createJimiWriter(args[1]);
// pull the images out of the vector and
// into an array
Image[] series = new Image[images.size()];
images.copyInto(series);
// set the image array as the source for
// the JimiWriter
jw.setSource(series);
// write the images!
jw.putImage(args[1]);

}
// catch exception if the output file
// can’t be written to
catch (JimiException e) {
System.err.println("Error: " + e);
System.exit(1);

}
// finished!
System.exit(0);

}
}

Image Processing example method

public JimiBufferedRasterImage flipImage(JimiRasterImage source)
throws ImageAccessException

{
// the dimensions of the source image, which
// are used to create a same-sized target image
int width = source.getWidth();
int height = source.getHeight();
// create an empty target image to populate
// with flipped data
JimiBufferedRasterImage target =
Jimi.createBufferedRasterImage(width,height);

// a small buffer for pixel data to copy-between
int[] rowBuffer = new int[width];
// the index of the last row of the image
int lastRow = height - 1;
// loop through, copying each row from source to destination
for (int row = 0; row < height; row++) {
// get the source row
source.getRowRGB(row, rowBuffer, 0);
// copy it into the destination image at the
// opposite location
target.setRowRGB(lastRow-row, rowBuffer, 0);

}
// all finished, the target image is now fully populated
return target;

}

✦ LISTING 3

✦ LISTING 2

✦ LISTING 1

luke@activated.com mike@activated.com

52 • VOLUME: 3 ISSUE: 11 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

One of the coolest pieces
of technology I’d ever
used was a programming
interface for HK Sys-
tems’ mechanical cranes.
However, my coolness

factor just went through
the roof when I got a chance to

try out the Cyberflex Open 16k Develop-
ment Kit from Schlumberger Smart Cards
and Systems. Schlumberger is well known
in high-tech oilfield and measurement sys-
tems, and the Cyberflex development team
is part of their Testing and Transactions
group. The Java Card technology offers
some exciting opportunities for building
security and “wallet” applications using the
Java language, and Schlumberger is at the
forefront of this effort.

Product Installation
The Cyberflex kit ships with a Litronic

210 card reader, two Cyberflex smart cards
and the development software on a CD-
ROM. The installation process itself is
straightforward; it’s built with DemoShield
so it behaves like a typical product installa-
tion. There are four pieces of software to
install: the Microsoft Smart Card Base Com-
ponents, the Litronic 210 Reader Driver, the
Cyberflex Toolkit and the Cyberflex Docu-
mentation and Samples. Each installation
requires a reboot operation, which slows
down the overall installation, but it still
took only ten minutes to install everything.
The biggest challenge is getting the Litronic
card reader plugged in and operating, as it
uses a 25-pin serial adapter to connect to
your workstation. Since I was running on a
laptop, I was forced to dig into my bag of
tricks and find a 25-pin to 9-pin converter
(which Schlumberger is now including in
their kits). The reader is powered off the

keyboard connector, and I was able to con-
nect my external mouse and the reader
power supply into the same port without
difficulty.

Developing a Java Card
Application

I’d advise you to read through the Pro-
grammer’s Guide and the Java Card 2.0
specification document before you try
working with the software. The Java Card
2.0 API is based on the ISO 7816 framework
for smart cards, and not all smart card ven-
dors implement all features for all parts of
the ISO 7816 standard. Although I don’t
have a background in smart-card program-
ming, I could follow the manual fairly easily.
There are several key terms to understand
before you get rolling. The first is Applica-
tion Protocol Data Unit (APDU), the mes-
sage you send between your application
and the smart card. The Card Acceptance
Device (CAD) is the physical device into
which the smart card is inserted. The Java

Card Runtime Environment (JCRE) is the
Java Card Virtual Machine and core Java
Card API classes. You should also remem-
ber that, by definition, objects on the Java
Card are persistent, i.e., values persist from
one CAD session to the next.

Schlumberger provides a number of
sample applications as Java source files
along with the development kit, and I sug-
gest you start with the examples before
striking out on your own. While the Java
Card technology is powerful, you have to
get used to working in a 16 K environment
again, and the command language for ISO
7816 can be somewhat limiting if you

PRODUCT REVIEW

Cyberflex Open 16K
Development Kit

by Schlumberger
A development toolkit for building

JavaCard 2.0 Applications

by Jim Milbery

Figure 1: Wallet program

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

Cyberflex Open 16K
Development Kit
Schlumberger Smart Cards and Terminals

9800 Reisterstown Rd.

Owing Mills, MD 21117

Phone: 800 825-1155 ext. 208

Fax: 410 363-4336

Web: www.cyberflex.slb.com

E-mail: cyberflex@slb.com

Minimum Requirements: Windows 95/NT 4.0, 486
processor, 32 MB RAM, 50 MB disk space

Price: $499

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

53VOLUME: 3 ISSUE: 11 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

aren’t used to it. The Java applications you
build use only Boolean, byte and short
data types; your code must be derived
from the applet class and compiled with
the debugging option set, even for produc-
tion code.

I ignored convention and started with
the most complex of the four sample appli-
cations, the Wallet application. I used Ora-
cle’s JDeveloper 1.0 to open the Java source
code for Wallet and followed the instruc-
tions in the tutorial for compiling and test-
ing the application. You’ll find the instruc-
tions at this point a trifle unclear since you
need to use the simulator class libraries to
test your program and the tutorial doesn’t
explicitly point you toward that. In general,
I found the printed documentation a bit
skimpy, but the Cyberflex Web site
(www.cyberflex.slb.com) has a good news-
group bulletin board. Thanks to the numer-
ous postings from Schlumberger’s Anthony
Chen, I quickly figured out that I had the
wrong libraries. Once I fixed that problem, I
used the APDU simulator to test the Wallet
program (see Figure 1).

Deploying the Code
The APDU Manager, part of the Cyber-

flex toolkit, allows you to input commands
and data to your program as if the code
was running on the Java Card itself. On

the left-hand side of the panel is the input
window, which you can use to input a
command string to your Java program.
The right-hand panel of the form shows
the output from the program after pro-
cessing your command. The simulator
offers some clever additions, such as the
ability to save commands for later reuse.
Once I successfully tested the program
with the simulator, I used the MakeSolo
utility to convert my Java class file into a
stand-alone executable program and
deployed the code to the Java Card with-
out difficulty.

Building Your Own Program
from Scratch

Once you’re ready to begin developing
programs from scratch, Schlumberger pro-
vides a simple, elegant skeleton Java pro-
gram from which you can base your code.
The skeleton code is derived from the Java
applet class, and there is basically a five-
step process to build your own program.
First you create the applet name and class
of instruction (CLA), then definitions for
the primitive commands you’ll be support-
ing. Next you define and allocate your
instance variables for the application and
create your class methods for the process-
ing you plan to support in your program.
The final step is to connect your methods

to the APDU framework, which connects
the messaging from the card to your appli-
cation. Some restrictions are imposed on
your code by the framework, and I’d sug-
gest that you read the “Programming
Requirements” section of the Developer’s
Guide before you start designing your own
custom program.

Final Notes
Schlumberger is branding a complete

line of smart technology under the Smart
Village trademark, and they can print their
Cyberflex cards with your company logo
and information. The cards themselves
have the same dimensions as a credit card
with a small gold chip on the surface.
Schlumberger’s Cyberflex Open 16k Devel-
opment Kit is worth looking into if you’re
considering using the technology for secu-
rity or payment systems. Some other things
you can get involved with are ID/personnel
information, health care and telecommuni-
cations.

About the Author
Jim Milbery is an independent software consultant
based in Easton, Pennsylvania. Jim can be reached
at jmilbery@milbery.com or via his Web site at
www.milbery.com.

www.milbery.com

“World Class” Awards?
“I Believe the Only Reason the Product
Wins an Award Is They Pay SYS-CON
for Advertising...”

Several months ago I noticed some-
thing in Java Developer’s Journal:
EVERY review published wins the
World Class Award. or the Seal of

Approval. I don’t even read your product reviews
anymore. There always seems to be an ad for the
same product in your publication, which leads
me to believe the only reason the product won
the “award” was because they paid SYS-CON for
advertising. I don’t know this to be true, but it
seems that way. I suggest that you indicate what
criteria [are used to judge] products and how
SYS-CON remains independent of the review.

I do, however, enjoy the articles you publish
and have found many of the “how-to” articles very
useful. Please keep up the good work on this front
and good luck for the future.
Norm Cook
NWC Systems
cookn@cadvision.com

Thank you for your feedback. Java Develop-
er’s Journal offers two of the most prestigious
awards in the Java industry under the same strict
guidelines we apply to our editorial content. These
two awards are the JDJ Readers’ Choice Award

and the JDJ Editor’s
Choice Award. The first is
determined solely by votes
of JDJ readers; JDJ’s edi-

tor-in-chief selects the second. Neither the awards
nor the editorial direction of the magazine in gen-
eral have anything to do with JDJ’s advertising
sales. In support of this statement, JDJ’s advertis-

ing sales director has not communi-
cated by phone, e-mail or any other
means with JDJ’s editor-in-chief for
more than two years. We strongly
believe that any publication with con-
cerns for its integrity should be sensi-
tive to the inherent ethical questions
involved and impose similar mea-

sures.
Your comments and observations regarding

JDJ product reviews are simply not true. Less than
30% of the products reviewed in the magazine are
those of JDJ’s advertising partners. You can verify
this by examining the JDJ product review archives
at our Web site.

The criteria used to determine which products
warrant a review for publication are simple. All new
products submitted to us for a review are posted
on our “Writers’ Corner” Web site. Our writers then
ask for the products to evaluate them. The reviews
published with JDJ’s Seal of Approval reflect the
quality and relevance of the products to our read-
ership. –Editor

Can I Trust JDJ?
I considered taking JDJ up on the subscription

offer for Java Lobby members, but I am afraid I
must decline. A few issues back, JDJ came pack-
aged with a free copy of MS J++. I consider this to
be about as responsible as a desk-
top publishing magazine distribut-
ing a disc of Word viruses. I have
not bought an issue of JDJ since.
Michael Cornall
mcornall@istar.ca

Java Developer's Journal, as indicat-
ed in our mission statement over three
years ago, is the premiere vendor neu-
tral, technology driven, industry publi-
cation. We do not carry out a political agenda dictated
by any of the vendors in the Java industry, including Sun
Microsystems and Microsoft. JDJ's neutral policy is
reflected in our editorial direction as well as our careful
selection of articles and topics. –Editor

MICROSOFT’S RESPONSE
One of my favorite TV programs is

a PBS series called Connections. In
this show historian James Burke traces
a number of seemingly unrelated

technological advancements, inventions and scien-
tific discoveries – through hundreds of years – and
showed that in reality they are intimately connected
and led to some of our modern marvels, such as
man landing on the moon. One of the intriguing
aspects of this show is that many of the inventions
floundered, or outright failed, in the task to which
they were originally applied. It was only after some-
one reapplied the technology that a breakthrough
was made. We are masters of technology – we
should be able to direct how it is best used to
enhance our lives. The technology shouldn’t neces-
sarily constrain us to one course of action.

So it is with Java. There are those, like Mr. Cor-

nall [see preceding letter], so focused on the philo-
sophical issues they can’t see the opportunities
around them. Despite the hype, cross-platform is
not the No.1 issue in the design of most systems.
Further, the largest number of client machines are

running Windows. For those
situations where a “pure” Java
developer needs to produce a
compelling application for Win-
dows, Visual J++ is the only
logical choice. After all, an end
user doesn’t care one whit
what language an application is
written in. They want top-notch
functionality, good perfor-
mance and integration with

other desktop software. Visual J++ is vastly superior
to any “pure” Java implementation in this regard.

Are we alone in this view? Hardly. I’m sure I’ve
shown you our tracking study data before, but let
me refresh your memory. In our last survey (con-
ducted via randomly dialed phone numbers until
we complete approximately 700 developer surveys)
we found that only 6% of developers mentioned
Java when asked what languages they used. A
recent InfoWorld survey found that only 4% of cor-
porate developers had ever deployed a Java appli-
cation. Finally, a recent ComputerWorld survey
showed that 46% of Java developers used ODBC (a
vastly Windows technology) as their DB connection
and another 40% when through the JDBC/ODBC
bridge (again a Windows technology).

Finally, if he had just focused on the content of
your magazine I’m sure he would have seen you
don’t have an MS slant. Speaking of this, it sure
would be nice to see some balanced editorial or
technical articles on VJ6. It absolutely is the best
Java development tool available.
Bill Dunlap
Visual J++ Product Manager
bdunlap@microsoft.com

54 • VOLUME: 3 ISSUE: 11 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

“The Land of the Rising
Sun” by Alan Williamson

There’s a very interesting article in
Volume 3, Issue 9 of Java Develop-
er’s Journal about a company that’s been assem-
bling a Web/Java-based system based on Oracle,
all the problems they’ve been having with their
driver, and their lack of support. Good article!
Alan Sparks
asparks@nss.harris.com
java-apache-users@list.working-dogs.com

Aha, a man who knows the nomenclature! The
article you wrote was great; by the way, you’re a
very natural writer.
Bob Pasker
rbp@weblogic.com

I received my first issue of Java Developer’s
Journal, Volume 3, Issue 8. Nearly every article
previewed on the cover looked interesting and
very useful.

The information in Alan Williamson’s article
about Oracle JDBC drivers, in particular, has the
potential to save me many hours of frustration
when I develop my first Java Oracle application.

I was also pleased to see the “full source code”
for this article is available at JavaDevelopers-
Journal.com.

All in all, I’m very pleased with my first issue
and look forward to many more; I also look for-
ward, hopefully, to better coordination between
the physical and electronic editions.
Lee Levan
72030.3427@compuserve.com

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
Readers’

CHOICE
 AWARD

56 • VOLUME: 3 ISSUE: 11 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Currently hard at work, the Object Man-
agement Group (OMG) is preparing for a
preproduction release of the CORBA 3.0
specification before year-end. Such a
release will give CORBA ORB vendors an
opportunity to implement new CORBA ser-
vices and identify potential problems before
the final release in the first half of 1999.

The preproduction release is essentially
a test run of the specification, while the
final specification will differ from the “P”
release only in the changes necessary to
correct problems.

A question arises about whether CORBA
can continue to thrive in the face of all the
emerging distributed computing technolo-
gies, such as Java Remote Method Invoca-
tion (RMI) and XML-based programming
interfaces. The answer, unequivocally, is
Yes. With the changes that will go into
CORBA 3.0, not only will CORBA thrive, but
it will finally be complete enough to sup-
port mainstream adoption and use by mul-
tiple levels of developers.

CORBA is primarily used by systems
developers in the back office who have
extensive knowledge of building distributed
object applications. These developers are in
high demand and are extremely expensive.
But when it comes to integrating legacy
COBOL applications with new C++ applica-
tions, CORBA rises to the top of the solution
heap. That is, as long as a company can
obtain and support the resources necessary
to deliver that solution.

With 3.0, CORBA will achieve a new
level of capabilities that will serve two
groups: the hard-core distributed comput-
ing programmers and the less technical
business programmer/analysts. Note that
while CORBA 3.0 doesn’t simplify distrib-
uted object computing, it does simplify
the use of CORBA ORBs for the develop-
ment of distributed object applications.
Those building and deploying distributed
applications must still understand the
implications of networking, remote excep-
tion handling, object life cycles, multi-

threading and…the list goes on.

CORBA 2.2 and 2.3 Update
Before we can thoroughly dig into

CORBA 3.0, we first have to look at the work
delivered today by OMG-CORBA 2.2 and 2.3.
Some important changes and new features
being added to CORBA will impact CORBA
users and the capabilities of the future 3.0
release. CORBA 2.2, which is available now,
incorporated the following specification
into CORBA:
• CORBA IDL to Java language mapping

– The OMG formal specification for map-
ping CORBA types to Java objects.

• Portable ORB Adapter (POA) – This is
an important initiative that will allow all
future CORBA source code to be portable
across ORB vendors. While CORBA will
provide interoperability between ORBs, a
server written for one ORB implementa-
tion is not necessarily portable to anoth-
er. The POA provides a framework for
managing object creation, policies and
persistent identifiers, and a consistent
service for objects that span multiple
server lifetimes.

• COM/CORBA Interworking Part B –
This specification identifies the interop-
erability of Microsoft DCOM and
CORBA.

CORBA 2.3 simply amends the work of
2.2 for errors and problems and adds sup-
port POA for IDL/Java. POA for IDL/Java
states that any CORBA server developed
using Java and the POA shall be binary-
interoperable. That is, any CORBA/Java
application can be loaded into a compliant
JVM running any vendor’s ORB that sup-
ports the POA for IDL/Java.

CORBA 3.0 Features
CORBA 3.0 will bring many new fea-

tures to CORBA that will facilitate its
adoption in the enterprise. As previously
noted, CORBA, even at the 2.3 level, is
complex to implement. Some have identi-

fied Microsoft’s COM architecture as sim-
pler in some regards. But besides their both
having activate and deactivate binary mod-
ules, that statement is like comparing
apples to oranges.

The features listed and discussed below
will be added to CORBA in 3.0. Where possi-
ble (some specifications haven’t even
received submissions yet), we’ll identify the
benefits a feature will bring to the enterprise.
• CORBA Component Model – Perhaps the

most important and significant addition
to CORBA, this model will specify a
framework for the development of plug-
and-play CORBA objects. It will encapsu-
late the creation, life cycle and events for
a single object and allow clients to
explore an object’s capabilities, methods
and events dynamically. The component
model will significantly decrease the
learning curve for developing and using
CORBA servers and clients.

• CORBA Scripting Language – Scripting
languages are significantly easier to learn
than low-level programming languages.
They remove complexities such as memo-
ry allocation and deallocation, memory
pointers, and compilation and linking pro-
cedures. The CORBA scripting language
will let client developers create and
access CORBA servers while focusing on
integration for the development of busi-
ness logic.

• Objects-by-Value – CORBA has tradition-

Advanced features could make CORBA the way to go

by JP Morgenthal

CORBA 3.0 Update

CORBACorner

In early September, to fill in the
shadows left by industry rumors
about the upcoming CORBA 3.0
release, OMG held a press confer-
ence outlining the details of this dis-
tributed-component environment.
This month JP Morgenthal lays out
the pieces and how they affect Java
programmers.

Richard Soley
Editor, CORBACORNER
Chairman and CEO of the
Object Management Group, Inc.

57VOLUME: 3 ISSUE: 11 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

ally passed references to objects around
the network, which has simplified devel-
opment of the ORB environment. Refer-
ences are merely aliases to the real
object. Any methods calls made on the
reference are deferred to the real object
for processing. With the addition of
objects-by-value, CORBA will pass the
state of an object to another process for
manipulation. When passing objects by
this method, a proper type of object
server must be available to handle the
incoming object. However, as long as the
object doesn’t need to be activated, the
object can exist in its “by-value” form,
meaning it can be handed to a persis-
tence service or a messaging service for
further action.

• CORBA Interoperable Naming Service
– This service is the facility that allows
CORBA clients to look up and obtain a
reference to a CORBA server. Since each
ORB implements its own naming service,
and naming services aren’t readily inter-
operable across ORB implementations, a
manual configuration is necessary to tell
one naming service how to communicate
with another. This specification identifies
a way for independently developed
CORBA clients to share a single naming
context. The current submission has yet
to define how bootstrapping – the
process of naming services automatically
detecting each other’s presence – will be
accomplished.

Additionally, the specification adds sup-
port for URL-style naming conventions,
though the current submission doesn’t
yet identify how this will take place.

• Multiple Interfaces – As submissions
for this specification haven’t been
received yet, it’s unclear what specifical-
ly this service will provide. Its intent,
however, is to allow a single object to
present multiple views of itself through
an interface selection mechanism. If this
sounds like Microsoft COM’s interface
query facility, one of the intended pur-
poses of this specification was to more
closely align CORBA with the COM
object model.

• CORBA Persistent State Service (PSS) –
Possibly one of the most controversial
specifications for the OMG, this service
will replace the CORBA Persistence Ser-
vice, one of the least implemented ser-
vices due to its ambiguity and complexi-
ty. CORBA PSS will provide a simple
extensible interface that will allow
CORBA to hide the implementation of
storing and retrieving objects from the
client and provide a consistent portable
interface for CORBA server developers.

These six features embody the

CORBA components initiative. Addition-
al features include:
• Minimum CORBA – This specification

identifies the requirement for obtaining
the smallest footprint possible for a
CORBA ORB. Specifically, this work will
help jump-start the use of CORBA in
embedded devices.

• Realtime CORBA 1.0 – This feature will
extend the CORBA specification for a new
type of ORB called the Realtime ORB. It
will expose interfaces so that developers
will have more direct control over ORB
resource allocation.

• Asynchronous Messaging – This speci-
fication has two components: different
levels of quality-of-service agreements,
and IDL changes necessary to support
asynchronous method invocations.
CORBA previously provided only three
types of method invocation: synchro-
nous, deferred synchronous and one-
way. A one-way method invocation is a
primitive form of asynchronous invoca-
tion that sends the message with no
expectation for return. In the deferred
synchronous method, control is returned
to the client without a response, but the
ORB synchronously invokes the method
on the object and sends the response
later. Thus the ORB still blocks while
making the method call on behalf of the
client as an agent.

• Asynchronous Method Invocation
(AMI) – This defines a way for the client
and the ORB to asynchronously invoke a
method on an object. Hence the need for
quality-of-service policies, which tell the
ORB how to handle various delivery sce-
narios, such as when the object cannot be
reached or requires too many jumps to
deliver the method call. These quality-of-
service agreements are implemented as a
set of interfaces that manage policies, not
a specific metric that must be met.

• Java Language to IDL Mapping – This
facility will allow developers to build dis-
tributed applications completely in Java
and then generate the CORBA IDL from
the Java class files. Other binary applica-
tions can then access Java applications
using RMI over IIOP.

• Firewall Support – The firewall specifi-
cation defines interfaces for implement-
ing IIOP through a firewall. It includes
options for allowing the firewall to per-
form filtering and proxying on either side,
which is important for extending the use
of CORBA to the Internet and across orga-
nizational boundaries.

Conclusion
Simply speaking, the preproduction

release of the CORBA 3.0 specification at
year-end will provide ORB vendors an

opportunity to correct problems that may
arise during implementation of the new fea-
tures and services. For many ORB vendors,
some of these features may already be
available either in a proprietary manner or
one that is close to the released specifica-
tion (this is often the case when the specifi-
cation comes primarily from submitting
vendors).

For organizations considering CORBA as
a tool for integrating legacy and new sys-
tems, the new features and services could
ease implementation considerably. In addi-
tion, companies may find CORBA to be
among the most reliable of all interoper-
ability software – an increasingly important
issue in the age of distributed computing.
However, the most likely to benefit from
CORBA 3.0 are those attempting to address
application integration across heteroge-
neous hardware and operating system plat-
forms, where distributed computing
resources are in short supply.

About the Author
JP Morgenthal is the principal analyst with NC.Focus,
a rapidly growing analyst firm covering application
integration technologies. JP can be reached via
e-mail at JP@ncfocus.com.

S
Y
S

-C

ON RADIO

w
ww.sys-c

o
n
.c

o
m

Java Business Expo &
Java Developer’s Journal

Award Ceremony

Tune
in for LIVE

coverage of…

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
Readers’

CHOICE
 AWARD

SY
S-C

ON
 RA

DI
O

Only from…
SYS-CON
PUBLICATIONS

JP@ncfocus.com

58 • VOLUME: 3 ISSUE: 11 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

JINI is a new Java-based API from Sun
Microsystems. Devices that are JINI enabled
should be inherently able to talk to each
other and even exchange code. JINI allows
for store-bought devices to just “plug and
work.” What I’m going to discuss here is
what JINI looks like to a Java programmer.

JINI comes out of the same group as RMI
(Remote Method Invocation). It apparently
used to be an acronym, but somehow lost it
along the way. So a sort of prerequisite to
programming in JINI is knowing some Java
and being familiar with RMI. That said, let’s
begin. In JINI-land every device offers a ser-
vice that’s placed in a lookup for other
devices to retrieve those services. Here’s
an example service:

public interface PrinterService extends
Remote {

public void print(Object obj) throws Remo-
teException;
}

public class PrinterServiceImpl extends Uni-
castRemoteObject implements
PrinterService {

public void print(Object obj) throws Remo-
teException {

/** Code here to print the object **/
}

}

The print method in this example is
what other devices will call on the printer
in order to print. So where’s the JINI in all
this? Glad you asked! We need to add a
method to make the service register itself
in the lookup (for the sake of this article
we’ll assume a lookup is running some-
where out there on the network). (See
example below.)

public void register() {
try {

joinManager = new JoinManager(this,
entries,

new ServiceIDHandler(),

leaseManager);
} catch (IOException ioe) {

ioe.printStackTrace();
}

}

JoinManager is a helpful utility class for
registering a service with the lookup and
managing the leases for you. When I first
did some programming in JINI for a “whis-
per suite” demo for JavaOne ’98, I didn’t
have this helpful class. Mine grew to be
quite large. So now I’ve introduced the con-
cept of a lease, which is basically a time-out
renewal process so the lookup can discard
old services that could be sitting in the
lookup but are off the network (i.e., printer
unplugged). With the JoinManager and a
LeaseRenewalManager one doesn’t have to
worry about leasing. Here’s the API spec for
the constructor I’m using:

public JoinManager(java.lang.Object obj,
Entry[] attrSets,
ServiceIDListener callback,
LeaseRenewalManager leaseMgr)

throws java.io.IOException

As you can see, I haven’t explained what
an Entry is not and what a ServiceID is. A Ser-
viceID is a unique identifier for each service.
A service can already have a unique identifi-
er or it can obtain one from the lookup. For
the sake of our example we’re assuming the
printer doesn’t have a ServiceID (although in
reality an Epson JINI printer would probably
have shipped with a ServiceID in the ROM).
(See example below.)

public class ServiceIDHandler implements
ServiceIDListener {

public class ServiceIDHandler implements
ServiceIDListener {

public void serviceIDNotify(ServiceID
serviceID) {

/** Save the service ID somewhere **/
}

}
}

Now we need to find out what “Entry”
means. An Entry is an interface signifying
that the object implementing it is an Entry
(it has no methods!). When an object says
it’s an Entry, it’s saying that it’s serializable
and used in JINI as a set of attributes of a
service. That’s why, when we’re registering
our printer service, the JoinManager con-
structor wants an array of Entries. One
entry that’s pretty easy to use is Name. So
let’s use it!

Entry[] entries = new Entry[1];
entries[0] = new Name("Epson Printer Ser-
vice");

We’d then pass this into the JoinManag-
er. Assuming a lookup is on the network,
we’d have registered our PrinterService
remote interface in the lookup for commu-
nication with other services.

Let’s discuss a few more high-level and
interesting things about JINI. JINI is really
a way of “federating” virtual machines on
a network to work together, that is, JINI
makes the network the computer. When
most devices have JVMs, they all use the
same instruction set. The network merely
acts as the bus between two virtual micro-
processors on a virtual motherboard.
Also, JINI allows devices to distribute
code among themselves. One practical
example of this is the driver for the Epson
printer. It can be downloaded by a JINI-
enabled PC; all you have to do is plug in
the printer and click print in the word
processor and it will print – no installing
drivers in Windows 95 or Windows NT
Server, rebooting and all that stuff. Ulti-
mately, JINI-enabled devices will allow for
a new level of computing that is greatly
simplified in comparison to the present
state.

In a future article we’ll build a JINI brows-
er for browsing the contents of a lookup.

About the Author
Jason J. Rutherglen is CEO of the Silicon Valley
startup RSDi, which provides distributed fault-tolerant
e-commerce products and solutions on the various
Java application servers. RSDi’s flagship product is the
Online E-Commerce Server. Jason can be reached at
rsdi2000@yahoomail.com.

NEW JAVA TECHNOLOGY

by Jason Rutherglen

Bringing JINI Down to Earth
A way of “federating” virtual machines

on a network to work together

rsdi2000@yahoomail.com

Riding the Wave

As we approach the end of the second
millennium, history teaches us that the
only thing that’s certain is change. Both
natural history and human history consist
of changes that occur in waves. Like ocean
waves pounding the seashore, transforming
rocks and cliffs into sand, so the waves of
revolution and change have altered the

course of human history time and time again. As a software
development company, the ProtoView Development Corpora-
tion has experienced and ridden many waves of technological
innovation, including the current wave of Java technology.
Each wave brings with it new ideas and techniques to add to
the picture – and at the same
time removes things from the
software landscape by way of
making them unnecessary and
obsolete. This happened previ-
ously with the mainframe in the
’60s and ’70s, the PC in the ’80s,
Windows, the Internet and now
Java in the ’90s. While these
upheavals aren’t pleasant, or in
some cases even welcome, they
are fundamental, necessary and,
most of all, inevitable.

With the release of JDK 1.2
the Java community is once
again being transformed by a
towering wave of technological
innovation. The single largest
part of this wave is the Java
Foundation Classes (JFC)
library. This package consists of
a series of fundamental classes
and components that encapsu-
late just about every aspect of user-interface behavior. In
effect, they replace the AWT library with a more sophisticated
object hierarchy. From border types and color patterns to list
controls and tables, the classes are designed to be for general
purposes and reusable across many different applications and
platforms. They even have the ability to morph themselves to
conform to the expected appearance standards of the plat-
form on which they’re running. The JFC classes are superbly
architected and seem to provide all the components and func-
tionality one would want in a late twentieth century user inter-
face. For the first time, the development community has at its
disposal a standard set of UI objects that can be reused,
extended and combined in countless ways to interact at many
different levels.

So how should developers handle this new wave of tech-
nology? What does a company like ProtoView, which special-
izes in components of its own, do when a wave of technology
looms and threatens to obliterate part of its own product line?
The answer is simple: move to higher ground, welcome the
wave’s benefits and fish in it for all it’s worth. Moving to high-
er ground means building new, more powerful, more sophisti-
cated components on the base JFC components. By reducing
the learning curve, which is considerable, and by combining
and extending the capabilities of JFC, we’re able to create an
even more compelling technology for component-based devel-
opment and code reuse. The base components can be extend-
ed to incorporate a simplified interface without sacrificing

flexibility. They can be
enhanced with features and
behaviors that they’re missing.
They can also be combined into
more powerful and sophisticat-
ed components that exceed the
sum of the parts. For example,
the ProtoView DataExplorerJ
product integrates JTree and
JTable components into a syn-
chronized data exploring tool.

If many pundits of the ‘80s
had been correct, most software
developers would have been
replaced by now with software
robots and off-the-shelf pack-
ages, and the Java language
itself would be unnecessary.
Whatever wave comes along,
there’s always more to be done;
humans always find a way to
build and improve on what
exists in order to take it to the

next level. That’s what ProtoView is doing and will continue to
do with JFC and whatever the next wave brings. While it’s cer-
tainly difficult to change and adapt to a fast-moving technolo-
gy such as Java, at the same time it’s essential that the devel-
opment community adopt and absorb these innovations so
that the Java language can mature as quickly as possible to
everyone’s benefit.

About the Author
Don Preuninger is vice president of research and development
at ProtoView Development Corp. Don can be reached at
donp@protoview.com.

60 • VOLUME: 3 ISSUE: 11 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

by Don Preuninger

Technological innovation sweeps the Java community once again

“Humans always

find a way to

build and improve

on what exists

in order to take

it to the next level.”

donp@protoview.com

I M H O

62 • VOLUME: 3 ISSUE: 11 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Oracle Chairman Invites
JDJ to OpenWorld ’98
(San Francisco, CA) – Chairman
Larry Ellison of Oracle
Corporation has invit-
ed JDJ to Oracle’s
OpenWorld ’98, begin-
ning November 7. In a
personal note sent to Fuat Kir-
caali, publisher of Java Devel-
oper’s Journal, Ellison said he
thought it would be “a lovely
idea” to have JDJ, the leading
independent Java publication,
present at the conference. Open-
World ’98, Oracle’s annual user
conference, is expected to
attract over 15,000 attendees.

ObjectSpace Wins
Place Among Top 100
on Inc. 500 List
(Dallas, TX) – ObjectSpace,
Inc., has won a place among
the top 100 on Inc.magazine’s
1998 Inc. 500 list
as a result of its
exceptional
growth rate.
ObjectSpace is
ranked 94th due to a 76%
increase between 1996 and
1997. The Inc. 500 list is an
annual ranking of the nation’s
fastest-growing private compa-
nies that have been in opera-
tion for at least five years.

KL Group Announces the
Release of Olectra Chart 6.0
(Toronto, Ontario) – KL Group,
a leading provider of GUI com-
ponents and Java develop-
ment tools, announced the
release of Olectra Chart 6.0,

the latest version of its chart-
ing tool for Windows develop-
ers. Olectra Chart 6.0 now pro-

vides developers with greater
power and flexibility by com-
bining high-performance
graphing power with the free-
dom to create and customize
virtually any type of chart.

Olectra Chart 6.0 is an
OLE/ActiveX control that
offers a wide range of 2D
and 3D charts and graphs

specifically tailored to meet
the needs of financial, techni-
cal and business users. For
more information visit their Web
site at www.klg.com.

Stingray Division of
Rogue Wave Software
Exhibits at PDC
(Denver, CO) – The Stingray
division of Rogue Wave Soft-
ware, Inc., exhibited its Visual
Studio 6.0 support at
Microsoft’s Professional Devel-
opers Conference (PDC).
Stingray demonstrated how its
extensive line of design tools is
tightly integrated with
Microsoft’s Visual C++ 6.0, Visu-
al Basic 6.0 and Visual J++ 6.0.

In addition, Stingray demon-
strated its MFC extension
classes at PDC, the first ever
integrated into the Visual C++
IDE. Stingray also presented its
innovative frameworks in
Objective Toolkit for WFC.

Stingray’s recently released
product line offers support for
development on the latest
Microsoft operating systems
including Windows NT, Win-
dows 98 and Windows CE.

For more information call
Rogue Wave Software at 888
442-9694 or 303 473-9198, or
visit www.roguewave.com.

ParaSoft Unveils
New Tool Inuse
(Monrovia, CA) – ParaSoft has
announced the availability of a
stand-alone version of their
development tool Inuse. Inuse
helps developers optimize
application performance by
analyzing and graphically ani-
mating dynamic memory allo-
cation in real time and report-
ing precise information about
each potential problem.

Inuse has been available as
an add-on to Insure++, Para-
Soft’s award-winning runtime
error-detection tool, and can
be run on any Windows exe-
cutable. The executables can
be built with any compiler and
can be written in any language
that compiles to an .exe file.

For more information call
888 305-0041 or visit www.para-
soft.com.

OneRealm Focuses on
Software Internationalization
(Boulder – CO) OneRealm, Inc.,
has been formed to provide
products that drastically
reduce the time to market and
cost of preparing both Internet-
based and traditional software
products for global deploy-
ment. The company is focused
on automating software inter-
nationalization, resulting in a
quicker, more cost-effective
way to make
software
ready for for-
eign markets. In addition, One-
Realm enables companies not
currently globalizing their soft-
ware to reap the rewards of the
larger international market.

For more information call
the company at 303 247-1284 or
visit www.onerealm.com.

(Washington DC) – Jinfonet
Software, Inc., has announced
the general availability of JRe-
port 1.1, the first
full-function
report writer and
server written
totally in Java.
JReport’s 100%
Java architecture
means that JRe-
port enjoys the full advan-
tages of Java, including
object orientation, portabili-
ty, low administration costs
and dynamic upgrades. JRe-

port works with any platform,
any database, any Web server
and any browser. The prod-
uct is available for immediate
downlaod at Jinfonet’s Web
site.

JReport Workbench is
priced at $995 per developer.
The multithreaded JReport

server is priced
at $995 for up to
five users, and
an extra $195 for
each additional
user. A single-
threaded version
of JReport Server

is also available at $100 per
user.

For more information call
301 983-5865 or visit www.jin-
fonet.com.

Jinfonet
Delivers

JReport

InstallShield Software Cor-
poration has announced the
availability of InstallShield 5.5
Professional. This
latest version of
the company’s
installation devel-
opment system
includes a rich feature
set of enhancement
designed for easier
enterprise and large-
scale software deploy-
ment. InstallShield 5.5
Professional is designed to
help application developers
create powerful and reliable

installations quickly and easi-
ly, as well as to assist network
administrators to deploy
enterprise-level Microsoft
Windows applications.

InstallShield 5.5 Profes-
sional includes a
number of feature
enhancements

designed to simplify
installation for
large-scale pro-
jects, and is avail-
able for a suggest-
ed retail price of
$795.

For more informa-
tion contact
Michelle Kohler at

847 619-7044 or via e-mail at
mkohler@installshield.com, or
visit www.installshield.com.

InstallShield 5.5
Professional

Rolls Out

64 • VOLUME: 3 ISSUE: 11 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

ProtoView Releases the
JFCDataCalendar
(Cranbury, NJ) – ProtoView has
announced the release of the
JFCDataCalendar, a high-pow-
ered, lightweight Java calendar-
ing component to be bundled
with the ProtoView JFCSuite.

JFCDataCalendar
is built on the
foundation of
JFC(SWING) and
includes features
such as drop-
down date selec-
tion, multiple

date and range selection, and
day-specific font/color/image
properties.

For more information con-
tact Noah Kuttler at 609 655-
5000 (x118) or visit www.pro-
toview.com.

SNiFF Available for SCO
Openserver and UnixWare
(Santa Cruz, CA) – SCO and
TakeFive Software have
announced an agreement to
make SNiFF+ v3.0.1 available
for the UnixWare 7 and SCO
Openserver Release 5 operat-
ing systems. Available through
the SCO Developer Program,
UnixWare and OpenServer
developer kits will feature a
trial version of SNiFF+ v3.0.1
that provides developers with
the option to purchase SNiFF+
at a special introductory price
through January 31, 1999.

By purchasing the kits,
developers also have the
option to purchase a single-
user, Windows node-locked
license for SNiFF v3.0.1 for $995
per license.

For more information visit
www.takefive.com or
www.sco.com.

VisualWorks Product
Line Expands
(Irvine, CA) – ObjectShare, Inc.,
has announced the availability
of VisualWorks RoseLink 1.0
software that provides support
for Rational’s enterprise analy-
sis and design tool, Rose98.

VisualWorks RoseLink adds
modeling capabilities to the
VisualWorks development envi-
ronment. Developers are able
to:
• Reverse-engineer existing

projects building a blueprint
of their applications

• Forward engineer Smalltalk

code from a Rose model
• Port existing VisualAge

Smalltalk applications to
VisualWorks

• Document existing applica-
tions to build understanding
of the application among
existing and new members of
their development team

• Define domain models for
multilanguage applications
For more information call

800 759-7272 or visit
www.objectshare.com.

WhiteBox 3.0 Tool
from Reliable
(Sterling, VA) – Reliable Soft-
ware Technologies Corporation
(RST) announced WhiteBox
3.0. This advanced code cover-
age tool enables software
development and testing orga-
nizations to reap the benefits
of software testing without
changing existing development
or testing processes. As a
result, WhiteBox 3.0 improves
productivity and time to mar-
ket by optimizing testing
resources.

For more information visit
www.rstcorp.com.

New ILOG JViews 2.0
Delivers for Java GUIs
(Mountain View, CA) – ILOG has
introduced ILOG JViews 2.0, an
enhanced version of its award-
winning ILOG Jviews 100% Pure
Java graphics library. In addi-
tion to the original fea-
tures, the new
release includes
sophist icated
visual izat ion
features never
before avail-
able in a sin-
gle Java prod-
uct – Web-based mapping, rela-
tionship displays and easy-to-
design data-aware icons. ILOG
JViews 2.0 is built to give devel-
opers the fastest, most compre-
hensive solution for designing
and maintaining high-end, Web-
based GUIs.

ILOG JViews 2.0 is available
now, and prices start at $6,500.
For more information visit their
Web site at www.ilog.com.

(New York, NY) – IBM has
announced eNetwork On-
Demand Server, software that
makes it easier to deploy and
use Web-based applications
within an enterprise. As more
businesses take advantage of
Java technology, they need to
ensure enterprise-class flexi-
bility, reliability, security and
ease of adminis-
tration, as well as
contain costs.

IBM eNetwork
On-Demand Serv-
er does this by
allowing cus-
tomers to create “smart” Web
applications that let them tai-

lor application preferences
down to the individual user,
allowing greater flexibility in
deploying and managing
applications from anywhere
in a network.

A prototype version of On-
Demand Server will be
demonstrated at the Java
Business Expo from Decem-
ber 7 to 10, at the Jacob K.
Javits Center in New York
City.

IBM’s Snehal Parikh, Steve
Ims and Brooke Upton met

with JDJ publish-
er Fuat Kircaali
and editor Brian
Christensen at
JDJ offices to
announce the
product upgrade.

For more information visit
www.software.ibm.com.

IBM Simplifies
Web Application

Management

(Ann Arbor, MI) – Object Insight’s JaVI-
SION is a programmer’s development
tool that automatically generates UML
Object Model Diagrams from .java or
.class files, enabling an iterative

code/design lifecycle. Teams can gener-
ate diagrams of their code and use the
“Add Related Classes” or “Show Imple-
mentors” comand in JaVISION to show a

class context, e.g., using class-
es from Sun’s JDK as collabora-
tors. Developers can open a
source code editor for any

class in a diagram, compile changes and
run an applet from the diagram view.

JaVISION is available for Windows
95/NT as a 30-day “try before you buy”

free software
download at
www.object-
insight.com. The
product can be
unlocked with a
$99 purchase at
any time by the
user.

For more infor-
mation e-mail Object Insight at
info@object-insight.com.

Object Insight,
Inc., Announces
JaVISION

Ron Suarez (r.), president
and founder of Object Insight,
visited the JDJ offices to
announce JaVISION

66 • VOLUME: 3 ISSUE: 11 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Legacy systems are too important for Java developers to ignore, but needn’t be a
hassle to access. These systems include everything from packaged applications like
SAP and Peoplesoft to aging home-grown mainframe systems and external data
sources such as EDI. Despite what you may personally think about some of the more
elderly of these systems, they play critical roles in many organizations and will con-
tinue to for years to come.

In this column, the second of three in the application server series, we’ll look at
how developers handle legacy systems. Previously we discussed how developers
accessed SQL results sets through the application server.

As developers we frequently want to bring a result set from the legacy system to
the application server where we make it available for reading and updating. In fact,
we may want to integrate any data into the application server as a result set. For
instance, Java developers may have to incorporate data from EDI or, more recently,
XML, the new, increasingly popular standard for structured data exchange over the
Web.

XML (Extensible Markup Language) is particularly interesting. It is a tag-based
markup language like HTML except that it can describe not only how data is to be
displayed on the Web, intranet or extranet, but what the data actually represents.
Once the computer knows what a piece of data represents – phone number, part
number or customer name – it can programmatically process the data, store it and
display it. XML is referred to as open and extensible because users can define the
tags they need. Expect to find more and more legacy data increasingly taking the
form of XML pages.

Some application servers handle legacy data through the use of adapters. The
adapter acts as middleware, taking a standard call from the client and transforming
it into a call to the appropriate legacy system API. It then presents the returning
data in a manner that closely resembles a SQL result set, with rows and columns,
so that the application server framework can easily work with the data. In addition
to making API calls, such as calls to SAP’s BAPI interface, adapters also read flat
files, interpret EDI and XML uploads, and interface with application integration
servers such as Active Software’s ActiveWeb.

Application server adapters are relatively new to the market, but I expect they will
become quite popular. Some application-server vendors provide them. Also watch
for third-party providers to develop adapters for some of the more esoteric legacy
applications to run with the more popular application servers.

Without commercial adapters, Java developers have to create their own. Those
who have done it generally don’t wish to repeat the experience. Creating an adapter
requires handcrafting custom, low-level connections to the legacy application, a dif-
ficult task that generally produces a mountain of specialized code.

Complicating the task is the need to make the results usable. Once the data is
retrieved, it needs to be cached, delivered, displayed, navigated and manipulated.
Hand programming these on a data-source by data-source basis can be extremely
time consuming and error-prone. In addition, every time the legacy application
vendor enhances the application or changes something, the Java programmer
must rewrite the adapter. I can think of better ways to have fun.

If you’re a Java programmer just trying to knock out an application that requires
a connection to a legacy system or packaged application, there is no glory in creat-
ing these adapters yourself. Shop around for an application server with built-in
adapter support that provides the legacy connections you need and can integrate
into your development framework. The application server’s ability to incorporate
such legacy data into a new Web application can provide tremendous benefits.

Application Servers: Part 2
Using Adapters to Go After Legacy Data

by Java George

Java George is George Kassabgi, director of
developer relations for Progress Software’s
Apptivity Product Unit. You can e-mail him at
george@apptivity.com.

THE GRIND

“Creating an adapter

requires handcrafting

custom, low-level

connections to the legacy

application, a difficult

task that generally

produces a mountain

of specialized code.”

George@sys-con.com

